References
Abernathy, P. M. (2020). News deserts and ghost newspapers: Will
local news survive. University of North Carolina Press.
Acemoglu, D. (2024). Harms of AI. In J. B. Bullock, Y.-C.
Chen, J. Himmelreich, V. M. Hudson, A. Korinek, M. M. Young, & B.
Zhang (Eds.), The Oxford handbook of AI
governance (pp. 660–706). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780197579329.013.65
Acemoglu, D., & Johnson, S. (2023). Power and progress: Our
thousand-year struggle over technology and prosperity.
PublicAffairs.
Acemoglu, D., & Restrepo, P. (2019). Artificial intelligence,
automation and work. In A. Agrawal, J. Gans, & A. Goldfarb (Eds.),
The economics of artificial intelligence: An agenda (pp.
197–236). The University of Chicago Press.
Acemoglu, D., & Restrepo, P. (2022a). Demographics and automation.
The Review of Economic Studies, 89(1), 1–44. https://doi.org/10.1093/restud/rdab031
Acemoglu, D., & Restrepo, P. (2022b). Tasks, automation, and the
rise in U.S. Wage inequality. Econometrica,
90(5), 1973–2016. https://doi.org/10.3982/ECTA19815
Acerbi, A. (2020). Cultural evolution in the digital age.
Oxford University Press. https://doi.org/10.1093/oso/9780198835943.001.0001
Achen, C. H., & Bartels, L. M. (2016). Democracy for realists:
Why elections do not produce responsive government. Princeton
University Press. https://doi.org/10.2307/j.ctvc7770q
Agarwal, S. D., & Barthel, M. L. (2015). The friendly barbarians:
Professional norms and work routines of online journalists in the united
states. Journalism, 16(3), 376–391. https://doi.org/10.1177/1464884913511565
Agrawal, A., Gans, J., & Goldfarb, A. (2022). Prediction
machines: The simple economics of artificial intelligence (Updated
and Expanded). Harvard Business Review Press. (Original work published
2018)
Ahmed, N., Wahed, M., & Thompson, N. C. (2023). The growing
influence of industry in AI research. Science,
379(6635), 884–886. https://doi.org/10.1126/science.ade2420
Alam, M. R., Reaz, M. B. I., & Ali, M. A. M. (2012). A review of
smart homes – past, present, and future. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews),
42(6), 1190–1203. https://doi.org/10.1109/TSMCC.2012.2189204
Allen, J., Howland, B., Mobius, M., Rothschild, D., & Watts, D. J.
(2020). Evaluating the fake news problem at the scale of the information
ecosystem. Science Advances, 6(14), eaay3539. https://doi.org/10.1126/sciadv.aay3539
Almqvist, M. F. (2016). Piracy and the politics of social media.
Social Sciences, 5(3), 41. https://doi.org/10.3390/socsci5030041
Alpaydin, E. (2021). Machine learning (Revised and updated).
The MIT Press. (Original work published 2016)
An, J., Kwak, H., Posegga, O., & Jungherr, A. (2019). Political
discussions in homogeneous and cross-cutting communication spaces. In J.
Pfeffer, C. Budak, Y.-R. Lin, & F. Morstatter (Eds.),
ICWSM 2019: Proceedings of the thirteenth international
AAAI conference on web and social media (pp. 68–79).
Association for the Advancement of Artificial Intelligence (AAAI).
Anderson, B. (2016). Imagined communities: Reflections on the origin
and spread of nationalism (Revised). Verso.
Angrist, J. D., & Pischke, J.-S. (2010). The credibility revolution
in empirical economics: How better research design is taking the con out
of econometrics. Journal of Economic Perspectives,
24(2), 3–30. https://doi.org/10.1257/jep.24.2.3
Anstead, N., & O’Loughlin, B. (2015). Social media analysis and
public opinion: The 2010 UK General Election. Journal
of Computer-Mediated Communication, 20(2), 204–220. https://doi.org/10.1111/jcc4.12102
Asimov, I. (1955). Franchise. If: Worlds of Science Fiction,
August, 2–15. https://ia801300.us.archive.org/25/items/1955-08_IF/1955-08_IF.pdf
Auletta, K. (2009). Googled: The end of the world as we know
it. The Penguin Press.
Auletta, K. (2018). Frenemies: The epic disruption of the ad
business (and everything else). Penguin Press.
Auxier, B., & Anderson, M. (2021). Social media use in
2021. Pew Research Center. https://www.pewresearch.org/internet/2021/04/07/social-media-use-in-2021/
Aviram, H., Bragg, A., & Lewis, C. (2017). Felon disenfranchisement.
Annual Review of Law and Social Science, 13, 295–311.
https://doi.org/10.1146/annurev-lawsocsci-110316-113558
Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B.,
Forechi, A., Jesus, L., Berriel, R., Paixão, T. M., Mutz, F., Paula
Veronese, L. de, Oliveira-Santos, T., & Souza, A. F. D. (2021).
Self-driving cars: A survey. Expert Systems with Applications,
165(1), 113816. https://doi.org/10.1016/j.eswa.2020.113816
Bai, H., Voelkel, J. G., Eichstaedt, J. C., & Willer, R. (2023).
Artificial intelligence can persuade humans on political issues. OSF
Preprints. https://doi.org/10.31219/osf.io/stakv
Bail, C. A., Argyle, L. P., Brown, T. W., Bumpus, J. P., Chen, H.,
Hunzaker, M. B. F., Lee, J., Mann, M., Merhout, F., & Volfovsky, A.
(2018). Exposure to opposing views on social media can increase
political polarization. PNAS: Proceedings of the National Academy of
Sciences, 115(37), 9216–9221. https://doi.org/10.1073/pnas.1804840115
Ball, M. (2022). The Metaverse: And how it will
revolutionize everything. Liveright Publishing Corporation.
Barberá, P. (2015). Birds of the same feather tweet together: Bayesian
ideal point estimation using Twitter data. Political
Analysis, 23(1), 76–91. https://doi.org/10.1093/pan/mpu011
Barberá, P., Boydstun, A. E., Linn, S., McMahon, R., & Nagler, J.
(2021). Automated text classification of news articles: A practical
guide. Political Analysis, 29(1), 19–42. https://doi.org/10.1017/pan.2020.8
Barbrook, R., & Cameron, A. (1995). The californian ideology.
Mute, 1(3). https://www.metamute.org/editorial/articles/californian-ideology
Barlow, J. P. (1996). A declaration of the independence of
cyberspace. EFF: Electronic Frontier Foundation. https://www.eff.org/cyberspace-independence
Barocas, S., Hardt, M., & Narayanan, A. (2023). Fairness and
machine learning: Limitations and opportunities. The MIT Press.
Barocas, S., & Selbst, A. D. (2016). Big data’s disparate impact.
California Law Review, 104, 671–732. https://doi.org/10.15779/Z38BG31
Baron, J. (2023). Thinking and deciding (5th ed.). Cambridge
University Press. https://doi.org/10.1017/9781009263672
(Original work published 1988)
Barron, A. T. J., Huang, J., Spang, R. L., & DeDeo, S. (2018).
Individuals, institutions, and innovation in the debates of the
French Revolution. PNAS: Proceedings of the National
Academy of Sciences, 115(18), 4607–4612. https://doi.org/10.1073/pnas.1717729115
Baumgartner, F. R., Boef, S. D., & Boydstun, A. E. (2008). The
decline of the death penalty and the discovery of innocence.
Cambridge University Press. https://doi.org/10.1017/CBO9780511790638
Beauchamp, N. (2017). Predicting and interpolating state-level polling
using Twitter textual data. American Journal of
Political Science, 61(2), 490–503. https://doi.org/10.1111/ajps.12274
Bechar, A., & Vigneault, C. (2016). Agricultural robots for field
operations: Concepts and components. Biosystems Engineering,
149, 94–111. https://doi.org/10.1016/j.biosystemseng.2016.06.014
Beieler, J., Brandt, P. T., Halterman, A., Schrodt, P. A., &
Simpson, E. M. (2016). Generating political event data in near real
time. In R. M. Alvarez (Ed.), Computational social science:
Discovery and prediction (pp. 98–120). Cambridge University Press.
https://doi.org/10.1017/CBO9781316257340.005
Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S.
(2021). On the dangers of stochastic parrots: Can language models be too
big? In FAccT ’21: Proceedings of the 2021 ACM conference on
fairness, accountability, and transparency (pp. 610–623).
Association for Computing Machinery. https://doi.org/10.1145/3442188.3445922
Bengfort, B., Bilbro, R., & Ojeda, T. (2018). Applied text
analysis with python: Enabling language aware data products with machine
learning. O’Reilly Media.
Benkler, Y. (2006). The wealth of networks: How social production
transforms markets and freedom. Yale University Press.
Benkler, Y. (2011). The penguin and the leviathan: How cooperation
triumphs over self-interest. Crown Publishing Group.
Bennett, W. L. (1990). Towards a theory of press-state relations in the
US. Journal of Communication, 40(2),
103–125. https://doi.org/10.1111/j.1460-2466.1990.tb02265.x
Bennett, W. L. (2005). Beyond pseudoevents: Election news as reality TV.
American Behavioral Scientist, 49(3), 364–378. https://doi.org/10.1177/0002764205280919
Bennett, W. L. (2016). News: The politics of illusion (10th
ed.). The University of Chicago Press. (Original work published 1983)
Bennett, W. L., & Livingston, S. (2018). The disinformation order:
Disruptive communication and the decline of democratic institutions.
European Journal of Communication, 33(2), 122–139. https://doi.org/10.1177/0267323118760317
Bennett, W. L., & Livingston, S. (Eds.). (2021). The
disinformation age: Politics, technology, and disruptive communication
in the United States. Cambridge University Press. https://doi.org/10.1017/9781108914628
Bennett, W. L., & Manheim, J. B. (2006). The one-step flow of
communication. The ANNALS of the American Academy of Political and
Social Science, 608(1), 213–232. https://doi.org/10.1177/0002716206292266
Bennett, W. L., & Segerberg, A. (2013). The logic of connective
action: Digital media and the personalization of contentious
politics. Cambridge University Press. https://doi.org/10.1017/CBO9781139198752
Benoit, K. (2020). Text as data: An overview. In L. Cuirini & R.
Franzese (Eds.), The SAGE handbook of research methods in political
science and international relations (pp. 461–497). SAGE
Publications. https://doi.org/10.4135/9781526486387.n29
Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S.,
& Matsuo, A. (2018). Quanteda: An R package for the
quantitative analysis of textual data. Journal of Open Source
Software, 3(30), 1–4. https://doi.org/10.21105/joss.00774
Bergen, M. (2022). Like, comment, subscribe: Inside
YouTube’s chaotic rise to world domination. Viking.
Bessen, J. (2022). New goliaths: How corporations use software to
dominate industries, kill innovation, and undermine regulation.
Yale University Press.
Bi, Z., & Wang, X. (2020). Computer aided design and
manufacturing. John Wiley & Sons.
Bimber, B. (2003). Information and American democracy:
Technology in the evolution of political power. Cambridge
University Press. https://doi.org/10.1017/CBO9780511615573
Bisbee, J., Clinton, J., Dorff, C., Kenkel, B., & Larson, J. (2023).
Artificially precise extremism: How internet-trained LLMs
exaggerate our differences. SocArxiv. https://doi.org/10.31235/osf.io/5ecfa
Black, F. (1971a). Toward a fully automated stock exchange, part i.
Financial Analysts Journal, 27(4), 28–35. https://doi.org/10.2469/faj.v27.n4.28
Black, F. (1971b). Toward a fully automated stock exchange, part II.
Financial Analysts Journal, 27(6), 24–28. https://doi.org/10.2469/faj.v27.n6.24
Blei, D. M., & Lafferty, J. D. (2007). A correlated topic model of
Science. The Annals of Applied Statistics,
1(1), 17–35. https://doi.org/10.1214/07-AOAS114
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet
allocation. Journal of Machine Learning Research, 3,
993–1022.
Boast, R. (2017). The machine in the ghost: Digitality and its
consequences. Reaktion Books.
Boczkowski, P. J., & Papacharissi, Z. A. (2018). Trump and the
media (P. J. Boczkowski & Z. A. Papacharissi, Eds.). The MIT
Press.
Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V., & Kalai, A.
(2016). Man is to computer programmer as woman is to homemaker?
Debiasing word embeddings. In D. D. Lee, U. von Luxburg, R.
Garnett, M. Sugiyama, & I. Guyon (Eds.), NIPS’16: Proceedings of
the 30th international conference on neural information processing
systems (pp. 4356–4364). Curran Associates Inc. https://doi.org/10.5555/3157382.3157584
Bond, B., & Exley, Z. (2016). Rules for revolutionaries: How big
organizing can change everything. Chelsea Green Publishing.
Bor, A., & Petersen, M. B. (2022). The psychology of online
political hostility: A comprehensive, cross-national test of the
mismatch hypothesis. American Political Science Review,
116(1), 1–18. https://doi.org/10.1017/S0003055421000885
Borges, J. L. (1975). On exactitude in science. In N. T. di Giovanni
(Trans.), A universal history of infamy (p. 131). Penguin
Books. (Original work published 1946)
Borgesius, F. J. Z., Trilling, D., Möller, J., Bodó, B., Vreese, C. H.
de, & Helberger, N. (2016). Should we worry about filter bubbles?
Internet Policy Review, 5(1), 1–16. https://doi.org/10.14763/2016.1.401
Bostrom, N. (2014). Superintelligence: Paths, dangers,
strategies. Oxford University Press.
Bourdieu, P. (1990). Social space and symbolic power. In In other
words: Essays towards a reflexive sociology (pp. 123–139). Stanford
University Press.
Bowker, G. C., & Star, S. L. (1999). Sorting things out:
Classification and its consequences. The MIT Press.
Bradford, A. (2020). The brussels effect: How the european union
rules the world. Oxford University Press. https://doi.org/10.1093/oso/9780190088583.001.0001
Brandt, M., Tucker, C. J., Kariryaa, A., Rasmussen, K., Abel, C., Small,
J., Chave, J., Rasmussen, L. V., Hiernaux, P., Diouf, A. A., Kergoat,
L., Mertz, O., Igel, C., Gieseke, F., Schöning, J., Li, S., Melocik, K.,
Meyer, J., Sino, S., … Fensholt, R. (2020). An unexpectedly large count
of trees in the West African Sahara and Sahel.
Nature, 587(7832), 78–82. https://doi.org/10.1038/s41586-020-2824-5
Brayne, S. (2021). Predict and surveil: Data, discretion, and the
future of policing. Oxford University Press. https://doi.org/10.1093/oso/9780190684099.001.0001
Breiman, L. (2001). Random forests. Machine Learning,
45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Brennen, J. S., & Kreiss, D. (2016). Digitalization. In The
international encyclopedia of communication theory and philosophy
(pp. 1–11). John Wiley & Sons. https://doi.org/10.1002/9781118766804.wbiect111
Brodersen, K. H., Gallusser, F., Koehler, J., Remy, N., & Scott, S.
L. (2015). Inferring causal impact using Bayesian
structural time-series models. The Annals of Applied
Statistics, 9(1), 247–274. https://doi.org/10.1214/14-AOAS788
Brown, E., & Farrell, M. (2021). The cult of we: WeWork, adam
neumann, and the great startup delusion. Crown Publishing Group.
Brown, M. A., & Zhou, S. (2019). Smart-grid policies: An
international review. In P. D. Lund, J. Byrne, R. Haas, & D. Flynn
(Eds.), Advances in energy systems: The large‐scale renewable energy
integration challenge (pp. 127–147). John Wiley & Sons. https://doi.org/10.1002/9781119508311.ch8
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal,
P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S.,
Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A.,
Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language models
are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, & H. Lin (Eds.), Advances in neural information
processing systems (Vol. 33, pp. 1877–1901). Curran Associates,
Inc. https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
Brussee, V. (2023). Social credit: The warring states of China’s emerging data empire. Palgrave
Macmillan. https://doi.org/10.1007/978-981-99-2189-8
Bryant, J., & Oliver, M. B. (Eds.). (2009). Media effects:
Advances in theory and research (3rd ed.). Routledge.
Brynjolfsson, E., Jin, W., & Wang, X. (2023). Information
technology, firm size, and industrial concentration. NBER Working
Paper, 31065. https://doi.org/10.3386/w31065
Brynjolfsson, E., & McAfee, A. (2016). The second machine age:
Work, progress, and prosperity in a time of brilliant technologies.
W. W. Norton & Company.
Buchanan, B., & Imbrie, A. (2022). The new fire: War, peace, and
democracy in the age of AI. The MIT Press.
Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional
accuracy disparities in commercial gender classification. In S. A.
Friedler & C. Wilson (Eds.), Proceedings of the 1st conference
on fairness, accountability and transparency (Vol. 81, pp. 77–91).
Proceedings of Machine Learning Research (PMLR). https://proceedings.mlr.press/v81/buolamwini18a.html
Burton, J. W., Cruz, N., & Hahn, U. (2021). Reconsidering evidence
of moral contagion in online social networks. Nature Human
Behavior, 5, 1629–1635. https://doi.org/10.1038/s41562-021-01133-5
Buyalskaya, A., Gallo, M., & Camerer, C. F. (2021). The golden age
of social science. PNAS: Proceedings of the National Academy of
Sciences, 118(5), 1–11. https://doi.org/10.1073/pnas.2002923118
Calhoun, C., Gaonkar, D. P., & Taylor, C. (2022). Degenerations
of democracy. Harvard University Press.
Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics
derived automatically from language corpora contain human-like biases.
Science, 356(6334), 183–186. https://doi.org/10.1126/science.aal4230
Camargo, C. Q., & Simon, F. M. (2022). Mis- and disinformation
studies are too big to fail: Six suggestions for the field’s future.
Harvard Kennedy School Misinformation Review, 3(5),
1–9. https://doi.org/10.37016/mr-2020-106
Cardella, L., Hao, J., Kalcheva, I., & Ma, Y.-Y. (2014).
Computerization of the equity, foreign exchange, derivatives, and
fixed-income markets. The Financial Review, 49(2),
231–243. https://doi.org/10.1111/fire.12033
Carlson, M., Robinson, S., & Lewis, S. C. (2021). News after
Trump: Journalism’s crisis of relevance in a changed media
culture. Oxford University Press. https://doi.org/10.1093/oso/9780197550342.001.0001
Carreyou, J. (2018). Bad blood: Secrets and lies in a silicon
valley. Alfred A. Knopf.
Casero-Ripollés, A., Feenstra, R. A., & Tormey, S. (2016). Old and
new media logics in an electoral campaign: The case of podemos and the
two-way street mediatization of politics. The International Journal
of Press/Politics, 21(3), 378–397. https://doi.org/10.1177/1940161216645340
Castells, M. (2001). The internet galaxy: Reflections on the
internet, business and society. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199255771.001.0001
Castells, M. (2013). Communication power (2nd ed.). Oxford
University Press. (Original work published 2009)
Chabert, J.-L. (Ed.). (1999). A history of algorithms: From the
pebble to the microchip (C. Weeks, Trans.). Springer. https://doi.org/10.1007/978-3-642-18192-4
(Original work published 1994)
Chafkin, M. (2021). The contrarian: Peter Thiel and
Silicon Valley’s pursuit of power.
Penguin Books.
Chen, L., Zhang, C., & Wilson, C. (2013). Tweeting under pressure:
Analyzing trending topics and evolving word choice on Sina
Weibo. In M. Muthukrishnan, A. El Abbadi, & B. Krishnamurthy
(Eds.), COSN ’13: Proceedings of the first ACM conference on online
social networks (pp. 89–100). ACM. https://doi.org/10.1145/2512938.2512940
Chia, A., Keogh, B., Leorke, D., & Nicoll, B. (2020).
Platformisation in game development. Internet Policy Review,
9(4), 1–28. https://doi.org/10.14763/2020.4.1515
Cho, W. K. T., & Cain, B. E. (2020). Human-centered redistricting
automation in the age of AI. Science, 369(6508),
1179–1181. https://doi.org/10.1126/science.abd1879
Chouldechova, A. (2017). Fair prediction with disparate impact: A study
of bias in recidivism prediction instruments. Big Data,
5(2), 153–163. https://doi.org/10.1089/big.2016.0047
Chow, S., Liver, S., & Nelson, A. (2018). Streamlining bioactive
molecular discovery through integration and automation. Nature
Reviews Chemistry, 2, 174–183. https://doi.org/10.1038/s41570-018-0025-7
Christensen, G., Freese, J., & Miguel, E. (2019). Transparent
and reproducible social science research: How to do open science.
University of California Press.
Christian, B. (2020). The alignment problem: Machine learning and
human values. W. W. Norton & Company.
Christians, C. G., Glasser, T. L., McQuail, D., Nordenstreng, K., &
White, R. A. (2009). Normative theories of the media: Journalism in
democratic societies. University of Illinois Press.
Christin, A. (2020). Metrics at work: Journalism and the contested
meaning of algorithms. Princeton University Press.
Cirone, A., & Spirling, A. (2021). Turning history into data: Data
collection, measurement, and inference in HPE. Journal
of Historical Political Economy, 1(1), 127–154. https://doi.org/10.1561/115.00000005
Citron, D. K., & Pasquale, F. (2014). The scored society: Due
process fo automated predictions. Washington Law Review,
89(1), 1–33.
Clark, D. (2016). Alibaba: The house that Jack Ma
built. Harper Collins.
Cogburn, D. L., & Espinoza-Vasquez, F. K. (2011). From networked
nominee to networked nation: Examining the impact of web 2.0 and social
media on political participation and civic engagement in the 2008 obama
campaign. Journal of Political Marketing, 10(1-2),
189–213. https://doi.org/10.1080/15377857.2011.540224
Cohen, I. G., Gostin, L. O., & Weitzner, D. J. (2020). Digital
smartphone tracking for COVID-19: Public health and civil
liberties in tension. JAMA, 323(23), 2371–2372. https://doi.org/10.1001/jama.2020.8570
Cohen, J. E. (2012). Configuring the networked self: Law, code, and
the play of everyday practice. Yale University Press.
Cohen, J. E. (2013). What privacy is for. Harvard Law Review,
126(7), 1904–1933.
Cohen, J. E. (2019). Between truth and power: The legal
constructions of informational capitalism. Oxford University Press.
https://doi.org/10.1093/oso/9780190246693.001.0001
Converse, P. (1964). The nature of belief systems in mass publics. In D.
E. Apter (Ed.), Ideology and discontent (pp. 206–261). Free
Press.
Coppock, A., Hill, S. J., & Vavreck, L. (2020). The small effects of
political advertising are small regardless of context, message, sender,
or receiver: Evidence from 59 real-time randomized experiments.
Science Advances, 6(36), 1–6. https://doi.org/10.1126/sciadv.abc4046
Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022).
Introduction to algorithms (4th ed.). The MIT Press. (Original
work published 1990)
Cotter, K. (2019). Playing the visibility game: How digital influencers
and algorithms negotiate influence on Instagram. New
Media & Society, 21(4), 895–913. https://doi.org/10.1177/1461444818815684
Crain, M. (2021). Profit over privacy: How surveillance advertising
conquered the internet. University of Minnesota Press.
Creemers, R. (2017). Cyber China: Upgrading propaganda,
public opinion work and social management for the twenty-first century.
Journal of Contemporary China, 26(103), 85–100. https://doi.org/10.1080/10670564.2016.1206281
Creemers, R. (2018). China’s social credit system: An evolving practice
of control. Social Science Research Network. https://doi.org/10.2139/ssrn.3175792
Crosby, A. W. (1996). The measure of reality: Quantification in
western europe, 1250–1600. Cambridge University Press. https://doi.org/10.1017/CBO9781107050518
Dahl, R. A. (1998). On democracy. Yale University Press.
Daston, L. (2022). Rules: A short history of what we live by.
Princeton University Press.
DellaPosta, D., Shi, Y., & Macy, M. (2015). Why do
Liberals drink Lattes? American Journal of
Sociology, 120(5), 1473–1511. https://doi.org/10.1086/681254
Dennis, J. (2020). A party within a party posing as a movement?
Momentum as a movement faction. Journal of Information
Technology & Politics, 17(2), 97–113. https://doi.org/10.1080/19331681.2019.1702608
Deringer, W. (2018). Calculated values: Finance, politics, and the
quantitative age. Harvard University Press.
Deseriis, M. (2020). Digital movement parties: A comparative analysis of
the technopolitical cultures and the participation platforms of the
movimento 5 stelle and the piratenpartei. Information, Communication
& Society, 23(12), 1770–1786. https://doi.org/10.1080/1369118X.2019.1631375
Dewey, J. (1927). The public and its problems. Holt Publishers.
Diakopoulos, N. (2019). Automating the news: How algorithms are
rewriting the media. Harvard University Press.
Diamandis, P. H., & Kotler, S. (2020). The future is faster than
you think: How converging technologies are transforming business,
industries, and our lives. Simon & Schuster.
Ding, J., Chun, A., Liu, Y.-L., Han, E., Lewis, D., Gal, D., &
Creemers, R. (2020). The AI powered state: China’s approach to
public sector innovation. Nesta. https://apo.org.au/sites/default/files/resource-files/2020-05/apo-nid305076.pdf
Doerr, J. (2018). Measure what matters: How Google,
Bono, and the Gates Foundation rock the world
with OKRs. Portfolio/Penguin.
Dommett, K. (2020). Roadblocks to interactive digital adoption? Elite
perspectives of party practices in the united kingdom. Party
Politics, 26(2), 165–175. https://doi.org/10.1177/1354068818761196
Dommett, K., Kefford, G., & Kruschinski, S. (2024). Data-driven
campaigning and political parties: Five advanced democracies
compared. Oxford University Press. https://doi.org/10.1093/oso/9780197570227.001.0001
Dommett, K., Temple, L., & Seyd, P. (2021). Dynamics of intra-party
organisation in the digital age: A grassroots analysis of digital
adoption. Parliamentary Affairs, 74(2), 378–397. https://doi.org/10.1093/pa/gsaa007
Donovan, J., Dreyfuss, E., & Friedberg, B. (2022). Meme wars:
The untold story of the online battles upending democracy in
America. Bloomsbury Publishing.
Douek, E. (2021). Governing online speech: From
“posts-as-trumps” to proportionality and probability.
Columbia Law Review, 121(3), 759–834. https://doi.org/10.2139/ssrn.3679607
Drezner, D. W., Farrell, H., & Newman, A. L. (2021). The uses
and abuses of weaponized interdependence (D. W. Drezner, H.
Farrell, & A. L. Newman, Eds.). Brookings Institution Press.
Duff, B. E., & Meisner, C. (2023). Platform governance at the
margins: Social media creators’ experiences with algorithmic
(in)visibility. Media, Culture & Society, 45(2),
285–304. https://doi.org/.o0r.g1/107.711/0717/6031464343473272121111923
Easley, D., & Kleinberg, J. (2010). Networks, crowds, and
markets: Reasoning about a highly connected world. Cambridge
University Press. https://doi.org/10.1017/CBO9780511761942
Eldridge, S. A. (2018). Online journalism from the periphery:
Interloper media and the journalistic field. Routledge. https://doi.org/10.4324/9781315671413
Elster, J. (2015). Explaining social behavior: More nuts and bolts
for the social sciences (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781107763111
(Original work published 2007)
Enos, R. D., & Hersh, E. D. (2015). Party activists as campaign
advertisers: The ground campaign as a principal-agent problem.
American Political Science Review, 109(2), 252–278. https://doi.org/10.1017/S0003055415000064
Entman, R. M. (2004). Projections of power: Framing news, public
opinion, and U.S. Foreign policy. The University of
Chicago Press.
Epstein, B., & Broxmeyer, J. D. (2020). The (surprisingly
interesting) story of e-mail in the 2016 presidential election.
Journal of Information Technology & Politics,
17(3), 232–248. https://doi.org/10.1080/19331681.2020.1755762
Epstein, E. J. (2017). How america lost its secrets: Edward snowden,
the man and the theft. Alfred A. Knopf.
Epstein, J. M. (2006). Generative social science: Studies in
agent-based computational modeling. Princeton University Press.
Erie, M. S., & Streinz, T. (2021). The beijing effect: China’s
digital silk road as transnational data governance. Journal of
International Law and Politics, 54(1), 1–92.
Espeland, W. N., & Sauder, M. (2007). Rankings and reactivity: How
public measures recreate social worlds. American Journal of
Sociology, 113(1), 1–40. https://doi.org/10.1086/517897
Eubanks, V. (2018). Automating inequality: How high-tech tools
profile, police, and punish the poor. St. Martin’s Press.
Evans, B. (2020). News by the ton: 75 years of US
advertising. Benedict Evans. https://www.ben-evans.com/benedictevans/2020/6/14/75-years-of-us-advertising
Evans, D. S., & Schmalensee, R. (2016). Matchmakers: The new
economics of multisided platforms. Harvard Business School
Publishing.
FAIR, M. F. A. R. D. T., Bakhtin, A., Brown, N., Dinan, E., Farina, G.,
Flaherty, C., Fried, D., Goff, A., Gray, J., Hu, H., Jacob, A. P.,
Komeili, M., Konath, K., Kwon, M., Lerer, A., Lewis, M., Miller, A. H.,
Mitts, S., Renduchintala, A., … Zijlstra, M. (2022). Human-level play in
the game of Diplomacy by combining language models with
strategic reasoning. Science, 378(6624), 1067–1074. https://doi.org/10.1126/science.ade9097
Fannin, R. A. (2019). Tech titans of china: How china’s tech sector
is challenging the world by innovating faster, working harder &
going global. Nicholas Brealey Publishing.
Farrell, H., & Newman, A. L. (2019a). Of privacy and power: The
transatlantic struggle over freedom and security. Princeton
University Press.
Farrell, H., & Newman, A. L. (2019b). Weaponized interdependence:
How global economic networks shape state coercion. International
Security, 44(1), 42–79. https://doi.org/10.1162/isec_a_00351
Farrell, H., Newman, A. L., & Wallace, J. (2022). Spirals of
delusion: How AI distorts decision-making and makes
dictators more dangerous. Foreign Affairs, 101(5),
168–181.
Ferguson, A. G. (2017). The rise of big data policing: Surveillance,
race, and the future of law enforcement. New York University Press.
Ferree, M. M., Gamson, W. A., Gerhards, J., & Rucht, D. (2002a).
Four models of the public sphere in modern democracies. Theory and
Society, 31(3), 289–324. https://doi.org/10.1023/A:1016284431021
Ferree, M. M., Gamson, W. A., Gerhards, J., & Rucht, D. (2002b).
Shaping abortion discourse: Democracy and the public sphere in
germany and the united states. Cambridge University Press. https://doi.org/10.1017/CBO9780511613685
Filgueiras, F. (2022). The politics of AI: Democracy and
authoritarianism in developing countries. Journal of Information
Technology & Politics, 19(4), 449–464. https://doi.org/10.1080/19331681.2021.2016543
Flaxman, S., Goel, S., & Rao, J. M. (2016). Filter bubbles, echo
chambers, and online news consumption. Public Opinion
Quarterly, 80(1), 298–320. https://doi.org/10.1093/poq/nfw006
Floreano, D., & Wood, R. J. (2015). Science, technology and the
future of small autonomous drones. Nature, 521,
460–466. https://doi.org/10.1038/nature14542
Flyvbjerk, B. (2001). Making social science matter: Why social
inquiry fails and how it can succeed again. Cambridge University
Press. https://doi.org/10.1017/CBO9780511810503
Foos, F. (2024). The use of AI by election campaigns.
OSF Preprints. https://doi.org/10.31219/osf.io/zm2r6
Foucault, M. (1994). The order of things: An archaeology of the
human sciences (A. Sheridan, Trans.). Vintage Books. (Original work
published 1966)
Fraser, N. (1990). Rethinking the public sphere: A contribution to the
critique of actually existing democracy. Social Text,
25/26, 56–80. https://doi.org/10.2307/466240
Frenkel, S., & Kang, C. (2021). An ugly truth: Inside facebook’s
battle for domination. Harper.
Frey, C. B. (2019). Technology trap: Capital, labor, and power in
the age of automation. Princeton University Press.
Frey, M. (2021). Netflix recommends: Algorithms, film choice, and
the history of taste. University of California Press.
Friedman, B., & Nissenbaum, H. (1996). Bias in computer systems.
ACM Transactions on Information Systems, 14(3),
330–347. https://doi.org/10.1145/230538.230561
Frier, S. (2020). No filter: The inside story of
Instagram. Simon & Schuster.
Gaisbauer, F., Pournaki, A., Banisch, S., & Olbrich, E. (2021).
Ideological differences in engagement in public debate on twitter.
PLoS One, 16(3), e0249241. https://doi.org/10.1371/journal.pone.0249241
Gallego, A., & Kurer, T. (2022). Automation, digitalization, and
artificial intelligence in the workplace: Implications for political
behavior. Annual Review of Political Science, 25,
463–484. https://doi.org/10.1146/annurev-polisci-051120-104535
Galloway, S. (2017). The four: The hidden DNA of amazon, apple,
facebook, and google. Portfolio/Penguin.
Gellman, B. (2020). Dark mirror: Edward Snowden and the
surveillance state. Bodley Head.
Gentzkow, M., Kelly, B., & Taddy, M. (2019). Text as data.
Journal of Economic Literature, 57(3), 535–574. https://doi.org/10.1257/jel.20181020
Gentzkow, M., & Shapiro, J. M. (2011). Ideological segregation
online and offline. The Quarterly Journal of Economics,
126(4), 1799–1839. https://doi.org/10.1093/qje/qjr044
Gerbaudo, P. (2019). The digital party: Political organisation and
online democracy. Pluto Press.
Gerring, J. (2012). Social science methodology: A unified
framework (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139022224
(Original work published 2001)
Gessen, M. (2020). Why are some journalists afraid of "moral clarity"?
The New Yorker. https://www.newyorker.com/news/our-columnists/why-are-some-journalists-afraid-of-moral-clarity
Gessler, T., & Hunger, S. (2022). How the refugee crisis and radical
right parties shape party competition on immigration. Political
Science Research and Methods, 10(3), 524–544. https://doi.org/10.1017/psrm.2021.64
Gieryn, T. F. (1999). Cultural boundaries of science: Credibility on
the line. University of Chicago Press.
Gigerenzer, G. (2018). The bias bias in behavioral economics. Review
of Behavioral Economics, 5(3–4), 303–336. https://doi.org/10.1561/105.00000092
Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making.
Annual Review of Psychology, 62, 451–482. https://doi.org/10.1146/annurev-psych-120709-145346
Gilardi, F., Baumgartner, L., Dermont, C., Donnay, K., Gessler, T.,
Kubli, M., Leemann, L., & Müller, S. (2022). Building research
infrastructures to study digital technology and politics: Lessons from
Switzerland. PS: Political Science & Politics,
55(2), 354–359. https://doi.org/10.1017/S1049096521000895
Gilardi, F., Gessler, T., Kubli, M., & Müller, S. (2021). Social
media and political agenda setting. Political Communication,
39(1), 39–60. https://doi.org/10.1080/10584609.2021.1910390
Golder, S. A., & Macy, M. W. (2014). Digital footprints:
Opportunities and challenges for online social research. Annual
Review of Sociology, 40, 129–152. https://doi.org/10.1146/annurev-soc-071913-043145
Goldfarb, A., & Lindsay, J. R. (2022). Prediction and judgment: Why
artificial intelligence increases the importance of humans in war.
International Security, 46(3), 7–50. https://doi.org/10.1162/isec_a_00425
Golebiewski, M., & boyd, danah. (2019). Data voids: Where
missing data can easily be exploited. Data & Society. https://datasociety.net/wp-content/uploads/2019/11/Data-Voids-2.0-Final.pdf
González-Bailón, S. (2017). Decoding the social world: Data science
and the unintended consequences of communication. The MIT Press.
González-Bailón, S., Borge-Holthoefer, J., Rivero, A., & Moreno, Y.
(2011). The dynamics of protest recruitment through an online network.
Nature Scientific Reports, 1(197). https://doi.org/10.1038/srep00197
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep
learning. The MIT Press.
Goodhart, D. (2017). The road to somewhere: The new tribes shaping
british politics. C. Hurst & Co.
Gorwa, R. (2019a). The platform governance triangle: Conceptualising the
informal regulation of online content. Internet Policy Review,
8(2), 1–22. https://doi.org/10.14763/2019.2.1407
Gorwa, R. (2019b). What is platform governance? Information,
Communication & Society, 22(6), 854–871. https://doi.org/10.1080/1369118X.2019.1573914
Gorwa, R., Binns, R., & Katzenbach, C. (2020). Algorithmic content
moderation: Technical and political challenges in the automation of
platform governance. Big Data & Society, 7(1),
1–15. https://doi.org/10.1177/2053951719897945
Granovetter, M. (2017). Society and economy: Framework and
principles. The Belknap Press of Harvard University.
Green, J. (2017). Devil’s bargain: Steve Bannon,
Donald Trump, and the storming of the
Presidency. Penguin Press.
Gregory, P. R., & Markevich, A. (2002). Creating Soviet
industry: The house that Stalin built. Slavic
Review, 61(4), 787–814. https://doi.org/10.2307/3090390
Griffiths, J. (2019). The great firewall of China: How
to build and control an alternative version of the internet. ZED
Books.
Grimmer, J., Roberts, M. E., & Stewart, B. M. (2022). Text as
data: A new framework for machine learning and the social sciences.
Princeton University Press.
Guess, A. M., Nyhan, B., & Reifler, J. (2020). Exposure to
untrustworthy websites in the 2016 US election. Nature
Human Behavior, 4, 472–480. https://doi.org/10.1038/s41562-020-0833-x
Guess, A., Nagler, J., & Tucker, J. A. (2019). Less than you think:
Prevalence and predictors of fake news dissemination on
Facebook. Science Advances, 5(1), 1–8. https://doi.org/10.1126/sciadv.aau4586
Guess, A., Nyhan, B., Lyons, B., & Reifler, J. (2018). Avoiding
the echo chamber about echo chambers: Why selective exposure to
like-minded political news is less prevalent than you think. Knight
Foundation. {https://kf-site-production.s3.amazonaws.com/media_elements/files/000/000/133/original/Topos_KF_White-Paper_Nyhan_V1.pdf}
Gurri, M. (2018). The revolt of the public and the crisis of
authority in the new millennium (2nd ed.). Stripe Press.
Guttman, A. (2007). Democracy. In R. E. Goodin, P. Pettit, & T.
Pogge (Eds.), A companion to contemporary political philosophy
(2nd ed., pp. 521–532). Blackwell Publishing. https://doi.org/10.1002/9781405177245.ch25
Habermas, J. (1981). Theorie des kommunikativen
Handelns. Suhrkamp.
Habermas, J. (1990). Strukturwandel der Öffentlichkeit: Untersuchungen zu
einer Kategorie der bürgerlichen
Gesellschaft. Suhrkamp. (Original work published 1962)
Hafner, K., & Lyon, M. (1996). Where wizards stay up late: The
origins of the internet. Simon & Schuster.
Halberstam, D. (1972). The best and the brightest. Random
House.
Han, H. (2014). How organizations develop activists: Civic
associations and leadership in the 21st century. Oxford University
Press. https://doi.org/10.1093/acprof:oso/9780199336760.001.0001
Hand, D. J. (2004). Measurement theory and practice: The world
through quantification. Wiley.
Hand, D. J. (2007). Information generation: How data rule our
world. Oneworld.
Hand, D. J., Mannila, H., & Smyth, P. (2001). Principles of data
mining. The MIT Press.
Hanna, R. N., & Linden, L. L. (2012). Discrimination in grading.
American Economic Journal: Economic Policy, 4(4),
146–168. https://doi.org/10.1257/pol.4.4.146
Hanson, R. (2016). The age of Em: Work, love, and life
when robots rule the earth. Oxford University Press. https://doi.org/10.1093/oso/9780198754626.001.0001
Harcourt, B. E. (2006). Against prediction: Profiling, policing, and
punishing in an actuarial age. University of Chicago Press.
Hardt, H. (2001). Social theories of the press: Constituents of
communication research, 1840s to 1920s (2nd ed.). Rowman &
Littlefield.
Harwell, D., & Lorenz, T. (2023). Israel-Gaza war
sparks debate over TikTok’s role in setting public opinion.
Washington Post. https://www.washingtonpost.com/technology/2023/11/02/tiktok-israel-hamas-video-brainwash/
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements
of statistical learning: Data mining, inference, and prediction
(2nd ed.). Springer. https://doi.org/10.1007/978-0-387-84858-7
(Original work published 2001)
Herbst, S. (1993). Numbered voices: How opinion polling has shaped
american politics. The University of Chicago Press.
Hersh, E. D. (2015). Hacking the electorate: How campaigns perceive
voters. Cambridge University Press. https://doi.org/10.1017/CBO9781316212783
Hersh, E. D. (2018). Cambridge Analytica and the future of
data privacy: Written testimony of Eitan Hersh. In
Hearing before the United States Senate Committee on
the Judiciary. United States Senate. https://www.judiciary.senate.gov/imo/media/doc/05-16-18%20Hersh%20Testimony1.pdf
Hesse, H. (2002). The glass bead game (R. Winston & C.
Winston, Trans.). Picador. (Original work published 1943)
Hillman, J. E. (2021). The digital silk road: China’s quest to wire
the world and win the future. Harper Business.
Hindman, M. (2005). The real lessons of Howard Dean:
Reflections on the first digital campaign. Perspectives on
Politics, 3(1), 121–128. https://doi.org/10.1017/S1537592705050115
Hindman, M. (2009). The myth of of digital democracy. Princeton
University Press.
Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia
computer-mediated environments: Conceptual foundations. Journal of
Marketing, 60(3), 50–68. https://doi.org/10.1177/002224299606000304
Hoffmann, C. P. (2020). Techlash: Digitale plattformen zwischen utopie
und dystopie. In S. Russ-Mohl (Ed.), Streitlust und streitkunst:
Diskurs als essenz der demokratie (pp. 66–91). Herbert von Halem
Verlag.
Hofman, J. M., Sharma, A., & Watts, D. J. (2017). Prediction and
explanation in social systems. Science, 355(6324),
486–488. https://doi.org/10.1126/science.aal3856
Holmberg, E. S. (2021). Lessons from Trump’s
suspension: How Twitter should clarify and strengthen its
“public interest” approach to moderating leaders’
violence-inspiring speech. Harvard Journal of Law &
Technology, 35(1).
Holmes, D. E. (2017). Big data: A very short introduction.
Oxford University Press.
Horton, J. J. (2023). Large language models as simulated economic
agents: What can we learn from Homo Silicus? NBER
Working Papers. https://doi.org/10.3386/w31122
Howison, J., Wiggins, A., & Crowston, K. (2011). Validity issues in
the use of social network analysis with digital trace data. Journal
of the Association for Information Systems, 12(12),
767–797. https://doi.org/10.17705/1jais.00282
Hvitfeldt, E. (2022). Supervised machine learning for text analysis
in r. CRC Press.
Hwang, T. (2020). Subprime attention crisis: Advertising and the
time bomb at the heart of the internet. Farrat, Straus; Giroux.
Igo, S. (2007). The averaged american: Surveys, citizens, and the
making of a mass public. Harvard University Press.
Igo, S. E. (2018). The known citizen: A history of privacy in modern
america. Harvard University Press.
IJzerman, H., Lewis Jr., N. A., Przybylski, A. K., Weinstein, N.,
DeBruine, L., Ritchie, S. J., Vazire, S., Forscher, P. S., Morey, R. D.,
Ivory, J. D., & Anvari, F. (2020). Use caution when applying
behavioural science to policy. Nature Human Behavior,
4, 1092–1094. https://doi.org/10.1038/s41562-020-00990-w
Imbens, G. W., & Rubin, D. B. (2015). Causal inference for
statistics, social, and biomedical sciences: An introduction.
Cambridge University Press.
Isaac, M. (2019). Super pumped: The battle for uber. W. W.
Norton & Company.
Isaacson, W. (2014). The innovators: How a group of inventors,
hackers, geniuses, and geeks created the digital revolution. Simon
& Schuster.
Issenberg, S. (2012). The victory lab: The secret science of winning
campaigns. Crown Publishing Group.
Iyer, R., Koleva, S., Graham, J., Ditto, P., & Haidt, J. (2012).
Understanding libertarian morality: The psychological dispositions of
self-identified Libertarians. PLoS One,
7(8), e42366. https://doi.org/10.1371/journal.pone.0042366
Jackson, S. J., Bailey, M., & Welles, B. F. (2020).
#HashtagActivism: Networks of race and gender
justice. The MIT Press.
Jiang, M., & Fu, K. (2018). Chinese social media and big data: Big
data, big brother, big profit? Policy & Internet,
10(4), 372–392. https://doi.org/10.1002/poi3.187
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek, A., Potapenko,
A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A.,
Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D.
(2021). Highly accurate protein structure prediction with AlphaFold.
Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
Jungherr, A. (2012). The German federal election of 2009:
The challenge of participatory cultures in political campaigns.
Transformative Works and Cultures, 10. https://doi.org/10.3983/twc.2012.0310
Jungherr, A. (2014). The logic of political coverage on
Twitter: Temporal dynamics and content. Journal of
Communication, 64(2), 239–259. https://doi.org/10.1111/jcom.12087
Jungherr, A. (2015). Analyzing political communication with digital
trace data: The role of twitter messages in social science
research. Springer. https://doi.org/10.1007/978-3-319-20319-5
Jungherr, A. (2016a). Datengestützte Verfahren im Wahlkampf.
Zeitschrift für Politikberatung, 8(1),
3–14. https://doi.org/10.5771/1865-4789-2016-1-3
Jungherr, A. (2016b). Four functions of digital tools in election
campaigns: The German case. The International Journal
of Press/Politics, 21(3), 358–377. https://doi.org/10.1177/1940161216642597
Jungherr, A. (2019). Normalizing digital trace data. In N. J. Stroud
& S. C. McGregor (Eds.), Digital discussions: How big data
informs political communication (pp. 9–35). Routledge. https://doi.org/10.4324/9781351209434-2
Jungherr, A. (2023a). Artificial intelligence and democracy: A
conceptual framework. Social Media + Society, 9(3),
1–14. https://doi.org/10.1177/20563051231186353
Jungherr, A. (2023b). Digital campaigning: How digital media change the
work of parties and campaign organizations and impact elections. In J.
Skopek (Ed.), Research handbook digital sociology (pp.
446–462). Edward Elgar. https://doi.org/10.4337/9781789906769.00035
Jungherr, A., & Jürgens, P. (2010). The political click: Political
participation through e-petitions in Germany. Policy
& Internet, 2(4), 131–165. https://doi.org/10.2202/1944-2866.1084
Jungherr, A., & Jürgens, P. (2013). Forecasting the pulse: How
deviations from regular patterns in online data can identify offline
phenomena. Internet Research, 23(5), 589–607. https://doi.org/10.1108/IntR-06-2012-0115
Jungherr, A., & Jürgens, P. (2014). Through a glass, darkly:
Tactical support and symbolic association in Twitter
messages commenting on Stuttgart 21. Social Science
Computer Review, 32(1), 74–89. https://doi.org/10.1177/0894439313500022
Jungherr, A., Posegga, O., & An, J. (2019). Discursive power in
contemporary media systems: A comparative framework. The
International Journal of Press/Politics,
24(4), 404–425. https://doi.org/10.1177/1940161219841543
Jungherr, A., Posegga, O., & An, J. (2022). Populist supporters on
Reddit: A comparison of content and behavioral patterns
within publics of supporters of Donald Trump and
Hillary Clinton. Social Science Computer Review,
40(3), 809–830. https://doi.org/10.1177/0894439321996130
Jungherr, A., & Rauchfleisch, A. (2024). Negative downstream effects
of alarmist disinformation discourse: Evidence from the United
States. Political Behavior, 1–21. https://doi.org/10.1007/s11109-024-09911-3
Jungherr, A., Rauchfleisch, A., & Wuttke, A. (2024). Deceptive uses
of Artificial Intelligence in elections strengthen support
for AI ban. arXiv. https://doi.org/10.48550/arXiv.2408.1261
Jungherr, A., Rivero, G., & Gayo-Avello, D. (2020). Retooling
politics: How digital media are shaping democracy. Cambridge
University Press. https://doi.org/10.1017/9781108297820
Jungherr, A., & Schlarb, D. (2022). The extended reach of game
engine companies: How companies like Epic Games and
Unity Technologies provide platforms for extended reality
applications and the metaverse. Social Media + Society,
8(2), 1–12. https://doi.org/10.1177/20563051221107641
Jungherr, A., Schoen, H., & Jürgens, P. (2016). The mediation of
politics through Twitter: An analysis of messages posted
during the campaign for the German federal election 2013.
Journal of Computer-Mediated Communication, 21(1),
50–68. https://doi.org/10.1111/jcc4.12143
Jungherr, A., Schoen, H., Posegga, O., & Jürgens, P. (2017). Digital
trace data in the study of public opinion: An indicator of attention
toward politics rather than political support. Social Science
Computer Review, 35(3), 336–356. https://doi.org/10.1177/0894439316631043
Jungherr, A., & Schroeder, R. (2021). Disinformation and the
structural transformations of the public arena: Addressing the actual
challenges to democracy. Social Media + Society, 7(1),
1–13. https://doi.org/10.1177/2056305121988928
Jungherr, A., & Schroeder, R. (2022). Digital transformations of
the public arena. Cambridge University Press. https://doi.org/10.1017/9781009064484
Jungherr, A., & Schroeder, R. (2023). Artificial intelligence and
the public arena. Communication Theory, 33(2–3),
164–173. https://doi.org/10.1093/ct/qtad006
Jungherr, A., Schroeder, R., & Stier, S. (2019). Digital media and
the surge of political outsiders: Explaining the success of political
challengers in the United States, Germany, and
China. Social Media + Society, 5(3),
1–12. https://doi.org/10.1177/2056305119875439
Jungherr, A., & Theocharis, Y. (2017). The empiricist’s challenge:
Asking meaningful questions in political science in the age of big data.
Journal of Information Technology & Politics,
14(1), 97–109. https://doi.org/10.1080/19331681.2017.1312187
Jungherr, A., Wuttke, A., Mader, M., & Schoen, H. (2021). A source
like any other? Field and survey experiment evidence on how interest
groups shape public opinion. Journal of Communication,
71(2), 276–304. https://doi.org/10.1093/joc/jqab005
Jürgens, P., Jungherr, A., & Schoen, H. (2011). Small worlds with a
difference: New gatekeepers and the filtering of political information
on Twitter. In D. D. Roure & S. Poole (Eds.),
WebSci 2011: Proceedings of the 3rd international web science
conference. ACM. https://doi.org/10.1145/2527031.2527034
Jürgens, P., Meltzer, C. E., & Scharkow, M. (2022). Age and gender
representation on German TV: A longitudinal computational
analysis. Computational Communication Science, 4(1).
https://doi.org/10.5117/CCR2022.1.005.JURG
Jürgens, P., & Stark, B. (2017). The power of default on
Reddit: A general model to measure the influence of
information intermediaries. Policy & Internet,
9(4), 395–419. https://doi.org/10.1002/poi3.166
Jürgens, P., Stark, B., & Magin, M. (2020). Two half-truths make a
whole? On bias in self-reports and tracking data. Social Science
Computer Review, 38(5), 600–615. https://doi.org/10.1177/0894439319831643
Kafka, F. (1998). The castle (M. Harman, Trans.). Schocken.
(Original work published 1926)
Kafka, F. (1999). The trial (B. Mitchell, Ed. & Trans.).
Schocken. (Original work published 1925)
Kahan, D. M. (2016a). The politically motivated reasoning paradigm, part
1: What politically motivated reasoning is and how to measure it. In R.
A. Scott & M. C. Buchmann (Eds.), Emerging
Trends in the Social and Behavioral Sciences (pp. 1–16).
John Wiley & Sons. https://doi.org/10.1002/9781118900772.etrds0417
Kahan, D. M. (2016b). The politically motivated reasoning paradigm, part
2: Unanswered questions. In R. A. Scott & M. C. Buchmann (Eds.),
Emerging Trends in the Social and Behavioral
Sciences (pp. 1–15). John Wiley & Sons. https://doi.org/10.1002/9781118900772.etrds0418
Kaiser, J., & Rauchfleisch, A. (2019). The implications of venturing
down the rabbit hole. Internet Policy Review. https://policyreview.info/articles/news/implications-venturing-down-rabbit-hole/1406
Kaiser, J., & Rauchfleisch, A. (2020). Birds of a feather get
recommended together: Algorithmic homophily in YouTube’s
channel recommendations in the United States and
Germany. Social Media + Society, 6(4),
1–15. https://doi.org/10.1177/2056305120969914
Kanno-Young, Z., & Kang, C. (2021). “They’re killing people”: Biden denounces
social media for virus disinformation. The New York Times. https://www.nytimes.com/2021/07/16/us/politics/biden-facebook-social-media-covid.html
Kapczynski, A. (2020). The law of informational capitalism. The Yale
Law Journal, 129(5), 1460–1515.
Kargar, S., & Rauchfleisch, A. (2019). State-aligned trolling in
Iran and the double-edged affordances of
Instagram. New Media & Society,
21(7), 1506–1527. https://doi.org/10.1177/1461444818825133
Karpf, D. (2012a). Social science research methods in internet time.
Information, Communication & Society, 15(5),
639–661. https://doi.org/10.1080/1369118X.2012.665468
Karpf, D. (2012b). The MoveOn effect: The unexpected
transformation of american political advocacy. Oxford University
Press. https://doi.org/10.1093/acprof:oso/9780199898367.001.0001
Karpf, D. (2016). Analytical activism: Digital listerning and the
new political strategy. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780190266127.001.0001
Karpf, D. (2019). Something I no longer believe: Is
internet time slowing down? Social Media + Society,
5(3), 1–4. https://doi.org/10.1177/2056305119849492
Katz, E., & Lazarsfeld, P. F. (1955). Personal influence, the
part played by people in the flow of mass communications. The Free
Press.
Katz, R. S., & Mair, P. (2018). Democracy and the cartelization
of political parties. Oxford University Press.
Kaye, D. (2018). Report on artificial intelligence technologies and
implications for freedom of expression and the information
environment. United Nations Human Rights Office of the High
Commissioner. https://www.ohchr.org/EN/Issues/FreedomOpinion/Pages/ReportGA73.aspx
Kaye, D. (2019). Speech police: The global struggle to govern the
internet. Columbia Global Reports.
Keane, J. (2013). Democracy and media decadence. Cambridge
University Press. https://doi.org/10.1017/CBO9781107300767
Kelleher, J. D. (2019). Deep learning. The MIT Press.
Keller, D. (2018). Internet platforms: Observations on speech,
danger, and money. Hoover Institution. https://cyberlaw.stanford.edu/files/publication/files/381732092-internet-platforms-observations-on-speech-danger-and-money.pdf
Keuschnigg, M., Lovsjö, N., & Hedström, P. (2018). Analytical
sociology and computational social science. Journal of Computational
Social Science, 1(1), 3–14. https://doi.org/10.1007/s42001-017-0006-5
Kiefer, M. L. (2010). Journalismus und Medien als
Institutionen. UVK Verlagsgesellschaft.
Kim, H., Choi, H., Kang, H., An, J., Yeom, S., & Hong, T. (2021). A
systematic review of the smart energy conservation system: From smart
homes to sustainable smart cities. Renewable and Sustainable Energy
Reviews, 140(110755), 1–17. https://doi.org/10.1016/j.rser.2021.110755
Kim, J., & Lee, B. (2023). AI-augmented surveys:
Leveraging large language models for opinion prediction in nationally
representative surveys. arXiv. https://doi.org/10.48550/arXiv.2305.09620
King, G. (2011). Ensuring the data-rich future of the social sciences.
Science, 331(6018), 719–721. https://doi.org/10.1126/science.1197872
King, R. D., Rowland, J., Oliver, S. G., Young, M., Aubrey, W., Byrne,
E., Liakata, M., Markham, M., Pir, P., Soldatova, L. N., Sparkes, A.,
Whelan, K. E., Whelan, K. E., & Clare, A. (2009). The automation of
science. Science, 324(5923), 88–89. https://doi.org/10.1126/science.1165620
Kitchens, B., Johnson, S. L., & Gray, P. (2020). Understanding echo
chambers and filter bubbles: The impact of social media on
diversification and partisan shifts in news consumption. MIS
Quarterly, 44(4), 1619–1649. https://doi.org/10.25300/MISQ/2020/16371
Kitchin, R. (2014). Big data, new epistemologies and paradigm shifts.
Big Data & Society, 1(1), 1–12. https://doi.org/10.1177/2053951714528481
Kleinberg, J., & Tardos, Éva. (2005). Algorithm design.
Addison Wesley Longman.
Knight, A., & Creemers, R. (2021). Going viral: The Social
Credit System and COVID-19. Social Science
Research Network. https://doi.org/10.2139/ssrn.3770208
Knockel, J., Parsons, C., Ruan, L., Xiong, R., Crandall, J., &
Deibert, R. (2020). We chat, they watch how international users
unwittingly build up WeChat’s chinese
censorship apparatus. The Citizen Lab. https://tspace.library.utoronto.ca/bitstream/1807/101395/1/Report%23127--wechattheywatch-web.pdf
Knüpfer, C., Hoffmann, M., & Voskrensenskii, V. (2022). Hijacking
MeToo: Transnational dynamics and networked frame
contestation on the far right in the case of the “120
decibels” campaign. Information, Communication &
Society, 25(7), 1010–1028. https://doi.org/10.1080/1369118X.2020.1822904
Knuth, D. E. (1997). The art of computer programming: Fundamental
algorithms (3rd ed., Vol. 1). Addison Wesley Longman. (Original
work published 1968)
Kovach, B., & Rosenstiel, T. (2021). The elements of journalism:
What newspeople should know and the public should expect (4th ed.).
The Crown Publishing Group. (Original work published 2001)
Krebs, S., McCain, R. M., & Brundage, M. (2022). All the news that’s
fit to fabricate: AI-generated text as a tool of media
misinformation. Journal of Experimental Political Science,
9(1), 104–117. https://doi.org/10.1017/XPS.2020.37
Kreiss, D. (2012). Taking our country back: The crafting of
networked politics from Howard Dean to Barack
Obama. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199782536.001.0001
Kreiss, D. (2016). Prototype politics: Technology-intensive
campaigning and the data of democracy. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199350247.001.0001
Kreiss, D. (2019). Digital opportunity structures: Explaining variation
in digital mobilization during the 2016 democratic primaries. In M. X.
D. Carpini (Ed.), Digital media and democratic futures (pp.
42–68). University of Pennsylvania Press.
Kretschmer, M., Kretschmer, T., Peukert, A., & Peukert, C. (2023).
The risks of risk-based AI regulation: Taking liability seriously.
arXiv, 1–18. https://doi.org/10.48550/arXiv.2311.14684
Kroll, A. (2018). Cloak and data: The real story behind Cambridge Analytica’s rise and fall. Mother
Jones, May/June. https://www.motherjones.com/politics/2018/03/cloak-and-data-cambridge-analytica-robert-mercer/
Kuklinski, J. H., & Quirk, P. J. (2000). Reconsidering the rational
public: Cognition, heuristics, and mass opinion. In A. Lupia, M. D.
McCubbins, & S. L. Popkin (Eds.), Elements of reason: Cognition,
choice, and the bounds of rationality (pp. 153–182). Cambridge
University Press. https://doi.org/10.1017/CBO9780511805813.008
Kullback, S., & Leibler, R. A. (1951). On information and
sufficiency. The Annals of Mathematical Statistics,
22(1), 79–86.
Kuran, T. (1995). Private truths, public lies: The social
consequences of preference falsification. Harvard University Press.
Lafont, C. (2020). Democracy without shortcuts: A participatory
conception of deliberative democracy. Oxford University Press. https://doi.org/10.1093/oso/9780198848189.001.0001
Landemore, H. (2012). Democratic reason: Politics, collective
intelligence, and the rule of the many. Princeton University Press.
Landemore, H. (2024). Can artificial intelligence bring deliberation to
the masses? In R. Chang & A. Srinivasan (Eds.), Conversations in
philosophy, law, and politics (pp. 39–69). Oxford University Press.
https://doi.org/10.1093/oso/9780198864523.003.0003
Landemore, H., & Elster, J. (Eds.). (2012). Collective wisdom:
Principles and mechanisms. Cambridge University Press. https://doi.org/10.1017/CBO9780511846427
Lane, H., & Dyshel, M. (2022). Natural language processing in
action: Understanding, analyzing, and generating text with python
(2nd ed.). Manning Publications Co.
Laney, D. (2001). 3D data management: Controlling data volume, velocity,
and variety, application delivery strategies. META Group:
Application Delivery Strategies, 949.
Lanz, M., & Precht, R. D. (2022). Lanz und Precht
diskutieren über die
Medienlandschaft. Lanz Und Precht. https://www.youtube.com/watch?v=OvUSVSdr-zI
Larson, E. J. (2021). The myth of artificial intelligence: Why
computers can’t think the way we do. The Belknap Press of Harvard
University.
Laswell, H. (1948). The structure and function of communication in
society. In L. Bryson (Ed.), The communication of ideas (pp.
243–276). Institue for Religous; Social Studies.
Laver, M., Benoit, K., & Garry, J. (2003). Extracting policy
positions from political texts using words as data. American
Political Science Review, 97(2), 311–331. https://doi.org/10.1017/S0003055403000698
Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The
parable of Google Flu: Traps in big data analysis.
Science, 343(6176), 1203–1205. https://doi.org/10.1126/science.1248506
Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A.-L., Brewer,
D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T.,
King, G., Macy, M. W., Roy, D., & Alstyne, M. V. (2009).
Computational social science. Science, 323(5915),
721–723. https://doi.org/10.1126/science.1167742
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning.
Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Lee, K.-F. (2018). AI superpowers: China, Silicon
Valley, and the new world order. Houghton Mifflin Harcourt.
Lee, K.-F., & Quifan, C. (2021). AI 2041: Ten
visions for our future. Currency.
Lepore, J. (2020). If then: How one data company invented the
future. W. W. Norton & Company.
Levine, F., Locke, C., Searls, D., & Weinberger, D. (2000). The
cluetrain manifesto: The end of business as usual. Persus
Publishing.
Levy, S. (2010). Hackers: Heroes of the computer revolution.
O’Reilly Media.
Levy, S. (2011). In the plex: How google thinks, works, and shapes
our lives. Simon & Schuster.
Levy, S. (2020). Facebook: The inside story. Blue Rider Press.
Lewis, M. (2014). Flash boys: A wall street revolt. W. W.
Norton & Company.
Liang, F., Das, V., Kostyuk, N., & Hussain, M. M. (2018).
Constructing a data-driven society: China’s social credit system as a
state surveillance infrastructure. Policy & Internet,
10(4), 415–453. https://doi.org/10.1002/poi3.183
Lindblom, C. E. (1965). Intelligence of democracy: Decision making
through mutual adjustment. The Free Press.
Lindblom, C. E. (2001). The market system: What it is, how it works,
and what to make of it. Yale University Press.
Lippmann, W. (1927). The phantom public. The Macmillan Company.
Little, D. (2020). A new social ontology of government: Consent,
coordination, and authority. Palgrave Macmillan. https://doi.org/10.1007/978-3-030-48923-6
Liu, X., Glocker, B., McCradden, M. M., Ghassemi, M., Denniston, A. K.,
& Oakden-Rayner, L. (2022). The medical algorithmic audit. The
Lancet: Digital Health, 4(5), E384–E397. https://doi.org/10.1016/S2589-7500(22)00003-6
Lodge, M., & Taber, C. S. (2013). The rationalizing voter.
Cambridge University Press. https://doi.org/10.1017/CBO9781139032490
Louridas, P. (2017). Real-world algorithms: A beginner’s guide.
The MIT Press.
Lowe, W. (2008). Understanding Wordscores. Political
Analysis, 16(4), 356–371. https://doi.org/10.1093/pan/mpn004
Lowery, W. (2020). A reckoning over objectivity, led by black
journalists. The New York Times. https://www.nytimes.com/2020/06/23/opinion/objectivity-black-journalists-coronavirus.html
Lu, Y., & Pan, J. (2021). Capturing clicks: How the Chinese
Government uses clickbait to compete for visibility.
Political Communication, 38(1–2), 23–54. https://doi.org/10.1080/10584609.2020.1765914
Lupia, A., & McCubbins, M. D. (1998). The democratic dilemma:
Can citizens learn what they need to know? Cambridge University
Press.
Lutscher, P. M., Weidmann, N. B., Roberts, M. E., Jonker, M., &
King, A. (2020). At home and abroad: The use of denial-of-service
attacks during elections in nondemocratic regimes. Journal of
Conflict Resolution, 64(2-3), 373–401. https://doi.org/10.1177/0022002719861676
MacKenzie, D. (2021). Trading at the speed of light: How ultrafast
algorithms are transforming financial markets. Princeton University
Press.
MacKenzie, D. (2022). Blink, bid, buy. London Review of Books,
44(9). https://www.lrb.co.uk/the-paper/v44/n09/donald-mackenzie/blink-bid-buy
MacKenzie, D., Caliskan, K., & Rommerskirchen, C. (2023). The
longest second: Header bidding and the material politics of online
advertising. Economy and Society, 42(3), 554–578. https://doi.org/10.1080/03085147.2023.2238463
Macy, M. W., & Willer, R. (2002). From factors to actors:
Computational sociology and agent-based modeling. Annual Review of
Sociology, 28, 143–166. https://doi.org/10.1146/annurev.soc.28.110601.141117
Mair, P. (2013). Ruling the void: The hollowing of
Western democracy. Verso.
Margetts, H. (2001). The cyber party: The causes and consequences of
organisational innovation in european political parties. In The
causes and consequences of organisational innovation in european
political parties. ECPR Joint Sessions of Workshops.
Margetts, H. (2006). Cyber parties. In R. S. Katz & W. Crotty
(Eds.), Handbook of party politics (pp. 528–535). SAGE. https://doi.org/10.4135/9781848608047.n46
Mau, S. (2019). The metric society: On the quantification of the
social (S. Howe, Trans.). Polity Press. (Original work published
2017)
Mayson, S. G. (2019). Bias in, bias out. The Yale Law Journal,
128(8), 2218–2300.
McCombs, M., & Valenzuela, S. (2021). Setting the agenda: Mass
media and public opinion (3rd ed.). Polity Press. (Original work
published 2004)
McCorduck, P. (2004). Machines who think: A personal inquiry into
the history and prospects of artificial intelligence. A K Peters.
McElreath, R. (2020). Statistical rethinking: A bayesian course with
examples in r and stan (2nd ed.). CRC Press.
McFarland, M. (2014). Elon Musk: ’With
artificial intelligence we are summoning the demon.’. The Washington
Post. https://doi.org/2014-10-24
McGregor, S. C. (2019). Social media as public opinion: How journalists
use social media to represent public opinion. Journalism,
20(8), 1070–1086. https://doi.org/10.1177/1464884919845458
McGregor, S. C. (2020). “Taking the temperature of
the room”: How political campaigns use social media to understand
and represent public opinion. Public Opinion Quarterly,
84(S1), 236–256. https://doi.org/10.1093/poq/nfaa012
McKenna, E., & Han, H. (2014). Groundbreakers: How
Obama’s 2.2 Million volunteers transformed
campaigning in America. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199394593.001.0001
McQuail, D. (2013). Journalism and society. SAGE Publications.
Meckler, L. (2012). Obama data trove is up for grabs. The Wall
Street Journal. https://www.wsj.com/articles/SB10001424127887323622904578129432544571720
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A.
(2022). A survey on bias and fairness in machine learning. ACM
Computing Surveys, 54(6), 1–35. https://doi.org/10.1145/3457607
Menkveld, A. J. (2016). The economics of high-frequency trading: Taking
stock. Annual Review of Financial Economics, 8, 1–24.
https://doi.org/10.1146/annurev-financial-121415-033010
Mennicken, A., & Espeland, W. N. (2019). What’s new with numbers?
Sociological approaches to the study of quantification. Annual
Review of Sociology, 35, 223–245. https://doi.org/10.1146/annurev-soc-073117-041343
Mercier, H. (2020). Not born yesterday: The science of who we trust
and what we believe. Princeton University Press.
Merz, N., Regel, S., & Lewandowski, J. (2016). The Manifesto
Corpus: A new resource for research on political parties and
quantitative text analysis. Research & Politics,
3(2), 1–8. https://doi.org/10.1177/2053168016643346
Metaxa, D., Park, J. S., Robertson, R., Karahalios, K., Wilson, C.,
Hancock, J., & Sandvig, C. (2021). Auditing algorithms:
Understanding algorithmic systems from the outside in. Foundations
and Trends in Human–Computer Interaction, 14(4), 272–344.
https://doi.org/10.1561/1100000083
Metz, C. (2021). Genius makers: The mavericks who brought
AI to Google, Facebook, and the
world. Dutton.
Mignano, M. (2022). The end of social media and the rise of
recommendation media. Every. https://doi.org/https://every.to/p/the-end-of-social-media
Miller, J. H., & Page, S. E. (2007). Complex adaptive systems:
An introduction to computational models of social life. Princeton
University Press.
Mitchell, M. (2019). Artificial intelligence: A guide for thinking
humans. Farrat, Straus; Giroux.
Mitchell, S., Potash, E., Barocas, S., D’Amour, A., & Lum, K.
(2021). Algorithmic fairness: Choices, assumptions, and definitions.
Annual Review of Statistics and Its Application, 8,
141–163. https://doi.org/10.1146/annurev-statistics-042720-125902
Möller, J., Trilling, D., Helberger, N., & van Es, B. (2018). Do not
blame it on the algorithm: An empirical assessment of multiple
recommender systems and their impact on content diversity.
Information, Communication & Society, 21(7),
959–977. https://doi.org/10.1080/1369118X.2018.1444076
Morgan, S. L., & Winship, C. (2015). Counterfactuals and causal
inference: Methods and principles for social research (2nd ed.).
Cambridge University Press.
Morgus, R. (2019). The spread of russia’s digital authoritarianism. In
N. D. Wright (Ed.), Artificial intelligence, china, russia, and the
global order: Technological, political, global, and creative
perspectives (pp. 89–97). Air University Press.
Mozur, P., Xiao, M., & Liu, J. (2022). “An invisible
cage”: How China is policing the future. The New
York Times. https://www.nytimes.com/2022/06/25/technology/china-surveillance-police.html
Muller, J. Z. (2018). The tyranny of metrics. Princeton
University Press.
Müller, J.-W. (2021). Democracy rules. Allen Lane.
Müller, S. (2022). The temporal focus of campaign communication. The
Journal of Politics, 84(1), 585–590. https://doi.org/10.1086/715165
Munger, K. (2017). Tweetment effects on the tweeted: Experimentally
reducing racist harassment. Political Behavior, 39(3),
629–649. https://doi.org/10.1007/s11109-016-9373-5
Munger, K., & Phillips, J. (2022). Right-wing YouTube:
A supply and demand perspective. The International Journal of
Press/Politics, 27(1), 186–219. https://doi.org/10.1177/1940161220964767
Murgia, M. (2023). Algorithms are deciding who gets organ transplants.
Are their decisions fair? Financial Times. https://www.ft.com/content/5125c83a-b82b-40c5-8b35-99579e087951
Narayanan, A. (2023). Understanding social media recommendation
algorithms. Knight First Amendment Institute at Columbia
University. https://knightcolumbia.org/content/understanding-social-media-recommendation-algorithms
Natale, S., & Ballatore, A. (2014). The web will kill them all: New
media, digital utopia, and political struggle in the
Italian 5-Star Movement. Media, Culture
& Society, 36(1), 105–121. https://doi.org/10.1177/0163443713511902
Neuman, W. R. (1991). The future of the mass audience.
Cambridge University Press.
Neuman, W. R., Guggenheim, L., Jang, S. M., & Bae, S. Y. (2014). The
dynamics of public attention: Agenda-setting theory meets big data.
Journal of Communication, 64(2), 193–214. https://doi.org/10.1111/jcom.12088
Newman, N., Fletcher, R., Robertson, C. T., Eddy, K., & Nielsen, R.
K. (2022). Reuters institute digital news report 2022. Reuters
Institute for the Study of Journalism. https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2022
Nicholls, T., Shbbir, N., & Nielsen, R. K. (2016). Digital-born
news media in europe. Reuters Institute for the Study of
Journalism.
Nickerson, D. W., & Rogers, T. (2014). Political campaigns and big
data. The Journal of Economic Perspectives, 28(2),
51–74. https://doi.org/10.1257/jep.28.2.51
Nielsen, M. (2012). Reinventing discovery: The new era of networked
science. Princeton University Press.
Nielsen, R. K. (2011). Mundane internet tools, mobilizing practices, and
the coproduction of citizenship in political campaigns. New Media
& Society, 13(5), 755–771. https://doi.org/10.1177/1461444810380863
Nielsen, R. K. (2012). Ground wars: Personalized communication in
political campaigns. Princeton University Press.
Nielsen, R. K. (2018). No one cares what we know: Three responses to the
irrelevance of political communication research. Political
Communication, 35(1), 145–149. https://doi.org/10.1080/10584609.2017.1406591
Nielsen, R. K. (2020). Economic contexts of journalism. In K.
Wahl-Jorgensen & T. Hanitzsch (Eds.), The handbook of journalism
studies (2nd ed., pp. 324–340). Routledge. https://doi.org/10.4324/9781315167497-21
Nielsen, R. K., & Fletcher, R. (2022). Concentration of online news
traffic and publishers’ reliance on platform referrals: Evidence from
passive tracking data in the UK. Journal of
Quantitative Description: Digital Media, 2, 1–23. https://doi.org/10.51685/jqd.2022.015
Nielsen, R. K., & Ganter, S. A. (2018). Dealing with digital
intermediaries: A case study of the relations between publishers and
platforms. New Media & Society, 20(4), 1600–1617.
https://doi.org/10.1177/1461444817701318
Nilsson, N. J. (2010). The quest for artificial intelligence: A
history of ideas and achievements. Cambridge University Press. https://doi.org/10.1017/CBO9780511819346
Nissenbaum, H. (2009). Privacy in context: Technology, policy, and
the integrity of social life. Stanford University Press.
Nuernbergk, C., & Conrad, J. (2016). Conversations and campaign
dynamics in a hybrid media environment: Use of Twitter by
members of the German Bundestag. Social
Media + Society, 2(1), 1–14. https://doi.org/10.1177/2056305116628888
Nyhan, B. (2020). Facts and myths about misperceptions. Journal of
Economic Perspectives, 34(3), 220–236. https://doi.org/10.1257/jep.34.3.220
O’Mara, M. (2019). The code: Silicon valley and the remaking of
america. Penguin Press.
O’Neil, C. (2016). Weapons of math destruction: How big data
increases inequality and threatens democracy. Crown Publishing
Group.
O’Reilly, T. (2005). What is Web 2.0: Design patterns and
business models for the next generation of software. O’Reilly
Blog. http://oreilly.com/web2/archive/what-is-web-20.html
O’Reilly, T. (2017). WTF? What’s the future and why it’s up to
us. Harper Collins.
Ober, J. (2008). Democracy and knowledge: Innovation and learning in
classical athens. Princeton University Press.
Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019).
Dissecting racial bias in an algorithm used to manage the health of
populations. Science, 366(6464), 447–453. https://doi.org/10.1126/science.aax2342
Offe, C. (2006). Political institutions and social power: Conceptual
explorations. In I. Shapiro, S. Skowronek, & D. Galvin (Eds.),
Rethinking political institutions. The art of the state (pp.
9–31). New York University Press.
Open Science Collaboration. (2015). Estimating the reproducibility of
psychological science. Science, 349(6251), 943. https://doi.org/10.1126/science.aac4716
Page, S. E. (2018). The model thinker: What you need to know to make
data work for you. Basic Books.
Pan, J. (2020). Welfare for autocrats: How social assistance in
China cares for its rulers. Oxford University Press.
https://doi.org/10.1093/oso/9780190087425.001.0001
Pariser, E. (2011). The filter bubble: What the internet is hiding
from you. The Penguin Press.
Parker, G. G., Alstyne, M. W. V., & Choudary, S. P. (2016).
Platform revolution: How networked markets are transforming the
economy and how to make them work for you. W. W. Norton &
Company.
Parmar, N. J., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku,
A., & Tran, D. (2018). Image transformer. In J. Dy & A. Krause
(Eds.), Proceedings of the 35th international conference on machine
learning (pp. 4055–4064). PMLR. http://proceedings.mlr.press/v80/parmar18a/parmar18a.pdf
Pasquale, F. (2015). The black box society: The secret algorithms
that control money and information. Harvard University Press.
Pearl, J. (2009). Causality: Models, reasoning and inference
(2nd ed.). Cambridge University Press.
Pearl, J. (2019). The seven tools of causal inference, with reflections
on machine learning. Communications of the ACM, 62(3),
54–60. https://doi.org/10.1145/3241036
Pearlman, N. G. (2012). Margin of victory: How technologists help
politicians win elections (N. G. Pearlman, Ed.). Praeger.
Pentland, A. (2008). Honest signals: How they shape our world.
The MIT Press.
Perry, C., & DeDeo, S. (2021). The cognitive science of extremist
ideologies online. arXiv. https://doi.org/10.48550/arXiv.2110.00626
Phillips, A. (2021). Unconditional equals. Princeton University
Press.
Phillips, W. (2015). This is why we can’t have nice things: Mapping
the relationship between online trolling and mainstream culture.
The MIT Press.
Phillips, W. (2018). The oxygen of amplification: Better practices
for reporting on extremists, antagonists, and manipulators online.
Data & Society.
Phillips, W., & Milner, R. M. (2017). The ambivalent internet:
Mischief, oddity, and antagonism online. Polity Press.
Pickard, V. (2020). Democracy without journalism? Confronting the
misinformation society. Oxford University Press. https://doi.org/10.1093/oso/9780190946753.001.0001
Piper, A. (2018). Enumerations: Data and literary study. The
University of Chicago Press.
Pollitt, C., & Bouckaert, G. (2017). Public management reform: A
comparative analysis - into the age of austerity (4th ed.). Oxford
University Press.
Popkin, S. L. (1991). The reasoning voter: Communication and
persuasion in presidential campaigns. The University of Chicago
Press.
Popkin, S. L. (2021). Crackup: The Republican implosion
and the future of presidential politics. Oxford University Press.
https://doi.org/10.1093/oso/9780190913823.001.0001
Porter, T. M. (2020). Trust in numbers: The pursuit of objectivity
in science and public life (2nd ed.). Princeton University Press.
(Original work published 1995)
Posegga, O. (2023). Unlocking big data: At the crossroads of computer
science and the social sciences. In J. Skopek (Ed.), Research
handbook digital sociology (pp. 115–129). Edward Elgar. https://doi.org/10.4337/9781789906769.00013
Posegga, O., & Jungherr, A. (2019). Characterizing political talk on
Twitter: A comparison between public agenda, media agendas,
and the Twitter agenda with regard to topics and dynamics.
In HICSS 2019: Proceedings of the 52nd Hawaii
international conference on system science (pp. 2590–2599).
Scholarspace. https://doi.org/10.24251/HICSS.2019.312
Price, W. N., & Cohen, I. G. (2019). Privacy in the age of medical
big data. Nature Medicine, 25, 37–43. https://doi.org/10.1038/s41591-018-0272-7
Prince, S. J. D. (2023). Understanding deep learning. The MIT
Press.
Prior, M. (2007). Post-broadcast democracy: How media choice
increases inequality in political involvement and polarizes
elections. Cambridge University Press. https://doi.org/10.1017/CBO9781139878425
Prior, M. (2009). The immensely inflated news audience: Assessing bias
in self-reported news exposure. Public Opinion Quarterly,
73(1), 130–143. https://doi.org/10.1093/poq/nfp002
Prior, M. (2017). Conditions for political accountability in a
high-choice media environment. In K. Kenski & K. H. Jamieson (Eds.),
The Oxford handbook of political communication
(pp. 897–912). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199793471.013.63
Prior, M. (2018). Hooked: How politics captures people’s
interest. Cambridge University Press.
Przeworski, A. (1991). Democracy and the market: Political and
economic reforms in Eastern Europe and Latin
America. Cambridge University Press. https://doi.org/10.1017/CBO9781139172493
Przeworski, A. (2018). Why bother with elections? Polity Press.
Quiring, O. (2016). Interactivity. In Quiring, o. (2016).
Interactivity. The international encyclopedia of communication theory
and philosophy, 1–12. (pp. 1–12). John Wiley & Sons. https://doi.org/10.1002/9781118766804.wbiect075
Rahman, H. A. (2021). The invisible cage: Workers’ reactivity to opaque
algorithmic evaluations. Administrative Science Quarterly,
66(4), 945–988. https://doi.org/10.1177/00018392211010118
Rainie, L., & Wellman, B. (2012). Networked: The new social
operating system. The MIT Press.
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022).
Hierarchical text-conditional image generation with CLIP latents.
arXiv. https://doi.org/10.48550/arXiv.2204.06125
Rau, J. P., & Stier, S. (2019). Die
Echokammer-Hypothese: Fragmentierung der Öffentlichkeit und politische
Polarisierung durch digitale Medien?
Zeitschrift für Vergleichende Politikwissenschaft,
13(3), 339–417. https://doi.org/10.1007/s12286-019-00429-1
Rauchfleisch, A. (2017). The public sphere as an essentially contested
concept: A co-citation analysis of the last 20 years of public sphere
research. Communication and the Public, 2(1), 3–18. https://doi.org/10.1177/2057047317691054
Rauchfleisch, A., & Kaiser, J. (2020). The German
far-right on YouTube: An analysis of user overlap and user
comments. Journal of Broadcasting & Electronic Media,
64(3), 373–396. https://doi.org/10.1080/08838151.2020.1799690
Rauchfleisch, A., & Kaiser, J. (2021). Deplatforming the far-right:
An analysis of YouTube and BitChute.
Social Science Research Network. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3867818
Rauchfleisch, A., & Kovic, M. (2016). The internet and generalized
functions of the public sphere: Transformative potentials from a
comparative perspective. Social Media + Society, 2(2),
1–15. https://doi.org/10.1177/2056305116646393
Rauchfleisch, A., Siegen, D., & Vogler, D. (2023). How
COVID-19 displaced climate change: Mediated climate change
activism and issue attention in the Swiss media and online
sphere. Environmental Communication, 17(3), 313–321.
https://doi.org/10.1080/17524032.2021.1990978
Rauh, C., & Schwalbach, J. (2020). The ParlSpeech V2 data set:
Full-text corpora of 6.3 million parliamentary speeches in the key
legislative chambers of nine representative democracies. Harvard
Dataverse. https://doi.org/10.7910/DVN/L4OAKN
Raymond, E. S. (1999). The cathedral and the bazaar: Musings on
Linux and open source by an accidental revolutionary.
O’Reilly Media.
Rheingold, H. (1993). The virtual community: Homesteading on the
electronic frontier. Addison-Wesley.
Rid, T. (2020). Active measures: The secret history of
disinformation and political warfare. Farrat, Straus; Giroux.
Risse, M. (2023). Political theory of the digital age: Where
artificial intelligence might take us. Cambridge University Press.
https://doi.org/10.1017/9781009255189
Rivero, G. (2019). Preaching to the choir: Ideology and following
behaviour in social media. Contemporary Social Science,
14(1), 54–70. https://doi.org/10.1080/21582041.2017.1325924
Roberts, M. E. (2018). Censored: Distraction and diversion inside
China’s great firewall. Princeton University Press.
Rochet, J.-C., & Tirole, J. (2003). Platform competition in
two-sided markets. Journal of the European Economic
Association, 1(4), 990–1029. https://doi.org/10.1162/154247603322493212
Rochet, J., & Tirole, J. (2006). Two‐sided markets: A progress
report. The RAND Journal of Economics, 37(3), 645–667.
https://doi.org/10.1111/j.1756-2171.2006.tb00036.x
Rosen, J. (2006). The people formerly known as the audience.
PRESSthink: Ghost of Democracy in the Media Machince. http://archive.pressthink.org/2006/06/27/ppl_frmr.html
Roughgarden, T. (2016). Twenty lectures on algorithmic game
theory. Cambridge University Press. https://doi.org/10.1017/CBO9781316779309
Rusbridger, A. (2018). Breaking news: The remaking of journalism and
why it matters now. Canongate.
Russell, S., & Norvig, P. (2021). Artificial intelligence: A
modern approach (4th ed.). Pearson Education. (Original work
published 1995)
Salganik, M. J. (2018). Bit by bit: Social research in the digital
age. Princeton University Press.
Salganik, M. J., Dodds, P. S., & Watts, D. J. (2006). Experimental
study of inequality and unpredictability in an artificial cultural
market. Science, 311(5762), 854–856. https://doi.org/10.1126/science.1121066
Salganik, M. J., & Watts, D. J. (2009). Web-based experiments for
the study of collective social dynamics in cultural markets. Topics
in Cognitive Science, 1(3), 439–468. https://doi.org/10.1111/j.1756-8765.2009.01030.x
Sanders, N. E., & Schneier, B. (2021). Machine learning
featurizations for AI hacking of political systems.
arXiv. https://doi.org/10.48550/arXiv.2110.09231
Schäfer, A., & Zürn, M. (2021). Die demokratische
Regression. Suhrkamp.
Schäfer, M. S., & Wessler, H. (2020). Öffentliche Kommunikation in Zeiten künstlicher Intelligenz.
Publizistik, 65, 307–331. https://doi.org/10.1007/s11616-020-00592-6
Scharkow, M., Mangold, F., Stier, S., & Breuer, J. (2020). How
social network sites and other online intermediaries increase exposure
to news. PNAS: Proceedings of the National Academy of Sciences of
the United States of America, 117(6), 2761–2763. https://doi.org/10.1073/pnas.1918279117
Schlozman, K. L., Brady, H. E., & Verba, S. (2018). Unequal and
unrepresented: Political inequality and the people’s voice in the new
gilded age. Princeton University Press.
Schmøkel, R., & Bossetta, M. (2022). FBAdLibrarian and
Pykognition: Open science tools for the collection and
emotion detection of images in Facebook political ads with
computer vision. Journal of Information Technology &
Politics, 19(1), 118–128. https://doi.org/10.1080/19331681.2021.1928579
Schneider, G. (2018). Automating drug discovery. Nature Reviews Drug
Discovery, 17(97–113). https://doi.org/10.1038/nrd.2017.232
Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N.,
Goyal, A., & Bengio, Y. (2021). Toward causal representation
learning. Proceedings of IEEE, 109(5), 612–634. https://doi.org/10.1109/JPROC.2021.3058954
Schroeder, R. (2014). Big Data and the brave new world of
social media research. Big Data & Society, 1(2),
1–11. https://doi.org/10.1177/2053951714563194
Schroeder, R. (2018). Social theory after the internet: Media,
technology and globalization. UCL Press.
Schroeder, R. (2019). Digital media and the entrenchment of right-wing
populist agendas. Social Media + Society, 5(4), 1–11.
https://doi.org/10.1177/2056305119885328
Schroeder, R. (2021). Digital media and the globalizing spread of
populism. In D. Y. Jin (Ed.), The routledge handbook of digital
media and globalization (pp. 179–187). Routledge.
Schwalbach, J., & Rauh, C. (2021). Collecting large-scale
comparative text data on legislative debate. In H. Back, M. Debus, &
J. M. Fernandes (Eds.), The politics of legislative debate (pp.
91–109). Oxford University Press. https://doi.org/10.1093/oso/9780198849063.001.0001
Schwartzberg, M. (2015). Epistemic democracy and its challenges.
Annual Review of Political Science, 18, 187–203. https://doi.org/10.1146/annurev-polisci-110113-121908
Schwartzel, E. (2022). Red carpet: Hollywood, china, and the global
battle for cultutal supremacy. Penguin Press.
Schwemmer, C., Unger, S., & Heiberger, R. (2023). Automated image
analysis for studying online behaviour. In J. Skopek (Ed.), Research
handbook of digital sociology (pp. 278–291). Edward Elgar. https://doi.org/10.4337/9781789906769.00023
Scott, J. C. (1998). Seeing like a state: How certain schemes to
improve the human condition have failed. Yale University Press.
Scott, J. C. (2009). The art of not being governed: An anarchist
history of upland southeast asia. Yale University Press.
Scott, M., Bunce, M., & Wright, K. (2019). Foundation funding and
the boundaries of journalism. Journalism Studies,
20(14), 2034–2052. https://doi.org/10.1080/1461670X.2018.1556321
Segal, A. (2021). Huawei, 5G, and weaponized
interdependence. In D. W. Drezner, H. Farrell, & A. L. Newman
(Eds.), The uses and abuses of weaponized interdependence (pp.
149–168). Brookings Institution Press.
Settle, J. E. (2018). Frenemies: How social media polarizes
America. Cambridge University Press. https://doi.org/10.1017/9781108560573
Shapiro, C., & Varian, H. R. (1999). Information rules: A
strategic guide to the network economy. Harvard Business Review
Press.
Shifman, L. (2016). Cross-cultural comparisons of user-generated
content: An analytical framework. International Journal of
Communication, 10, 5644–5663.
Shirky, C. (2008). Here comes everybody: The power of organizing
without organizations. The Penguin Press.
Shoemaker, P. J., & Reese, S. D. (2014). Mediating the message
in the 21st century (3rd ed.). Routledge.
Shoemaker, P. J., & Vos, T. P. (2009). Gatekeeping theory.
Routledge.
Sides, J., & Vavreck, L. (2014). Obama’s not-so-big data.
Pacific Standard. http://www.psmag.com/navigation/politics-and-law/obamas-big-data-inconclusive-results-political-campaigns-72687/
Sifry, M. L. (2023). Can democrats be ’people-first’ if their campaigns
value people last? The Connector. https://theconnector.substack.com/p/can-democrats-be-people-first-if
Silge, J., & Robinson, D. (2017). Text mining with r: A tidy
approach. O’Reilly Media.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,
Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N.,
Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T.,
& Hassabis, D. (2016). Mastering the game of Go with
deep neural networks and tree search. Nature, 529,
484–489. https://doi.org/10.1038/nature16961
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M.,
Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap,
T., Simonyan, K., & Hassabis, D. (2018). A general reinforcement
learning algorithm that masters chess, shogi, and Go
through self-play. Science, 362(6419), 1140–1144. https://doi.org/10.1126/science.aar6404
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,
Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y.,
Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T.,
& Hassabis, D. (2017). Mastering the game of Go without
human knowledge. Nature, 550, 354–359. https://doi.org/10.1038/nature24270
Simitis, S. (1987). Reviewing privacy in an information society.
University of Pennsylvania Law Review, 135(3),
707–746. https://doi.org/10.2307/3312079
Simitis, S. (1995). From the market to the polis: The EU
directive on the protection of personal data. Iowa Law Review,
80(3), 445–469.
Simon, F. M., Altay, S., & Mercier, H. (2023). Misinformation
reloaded? Fears about the impact of generative
AI on misinformation are overblown. Harvard Kennedy
School Misinformation Review, 4(5), 1–11. https://doi.org/10.37016/mr-2020-127
Singh, S. (2020). Special delivery: How internet platforms use
artificial intelligence to target and deliver ads. New America
Foundation. https://www.newamerica.org/oti/reports/special-delivery/
Sı́thigh, D. M., & Siems, M. (2019). The Chinese Social Credit
System: A model for other countries? Morden Law Review,
82(6), 1034–1071. https://doi.org/10.1111/1468-2230.12462
Smith, B. C. (2019). The promise of artificial intelligence:
Reckoning and judgment. The MIT Press.
Solove, D. J. (2008). Understanding privacy. Harvard University
Press.
Somashekhar, S. P., Sepúlveda, M.-J., Puglielli, S., Norden, A. D.,
Shortliffe, E. H., Kumar, C. R., Rauthan, A., Kumar, N. A., Patil, P.,
Rhee, K., & Ramya, Y. (2018). Watson for oncology and breast cancer
treatment recommendations: Agreement with an expert multidisciplinary
tumor board. Annals of Oncology, 29(2), 418–423. https://doi.org/10.1093/annonc/mdx781
Soni, J. (2022). The founders: The story of paypal and the
entrepreneurs who shaped silicon valley. Simon & Schuster.
Sprietsma, M. (2013). Discrimination in grading: Experimental evidence
from primary school teachers. Empirical Economics,
45(1), 523–538. https://doi.org/10.1007/s00181-012-0609-x
Spufford, F. (2010). Red plenty: Inside the Fifties’
Soviet dream. Faber & Faber.
Stier, S., Breuer, J., Siegers, P., & Thorson, K. (2020).
Integrating survey data and digital trace data: Key issues in developing
an emerging field. Social Science Computer Review,
38(5), 503–516. https://doi.org/10.1177/0894439319843669
Stier, S., Mangold, F., Scharkow, M., & Breuer, J. (2022). Post
post-broadcast democracy? News exposure in the age of online
intermediaries. American Political Science Review,
116(2), 768–774. https://doi.org/10.1017/S0003055421001222
Stier, S., Posch, L., Bleier, A., & Strohmaier, M. (2017). When populists become popular: Comparing
Facebook use by the right-wing movement Pegida
and German political parties. Information,
Communication & Society, 20(9), 1365–1388. https://doi.org/10.1080/1369118X.2017.1328519
Stone, B. (2013). The everything store: Jeff bezos and the age of
amazon. Little, Brown; Company.
Stone, B. (2017). The upstarts: How Uber,
Airbnb, and the killer companies of the new Silicon
Valley are changing the world. Black Bay Books.
Stone, B. (2021). Amazon unbound: Jeff bezos and the invention of a
global empire. Simon & Schuster.
Stopczynski, A., Sekara, V., Sapiezynski, P., Cuttone, A., Madsen, M.
M., Larsen, J. E., & Lehmann, S. (2014). Measuring large-scale
social networks with high resolution. PLoS One, 9(4),
e95978. https://doi.org/10.1371/journal.pone.0095978
Stromer-Galley, J. (2000). On-line interaction and why candidates avoid
it. Journal of Communication, 50(4), 111–132. https://doi.org/10.1111/j.1460-2466.2000.tb02865.x
Stromer-Galley, J. (2019). Presidential campaigning in the internet
age (2nd ed.). Oxford University Press. https://doi.org/10.1093/oso/9780190694043.001.0001
(Original work published 2014)
Strossen, N. (2018). Hate: Why we should resist it with free speech,
not censorship. Oxford University Press.
Subhayan Mukerjee, S. G.-B., Sı́lvia Majó-Vázquez. (2018). Networks of
audience overlap in the consumption of digital news. Journal of
Communication, 68(1), 26–50. https://doi.org/10.1093/joc/jqx007
Sunstein, C. R. (2001). Republic.com. Princeton University
Press.
Tai, Y., & Fu, K. (2020). Specificity, conflict, and focal point: A
systematic investigation into social media censorship in
China. Journal of Communication, 70(6),
842–867. https://doi.org/10.1093/joc/jqaa032
Tausczik, Y. R., & Pennebaker, J. W. (2010). The psychological
meaning ofWords: LIWC and computerized text analysis
methods. Journal of Language and Social Psychology,
29(1), 24–54. https://doi.org/10.1177/0261927X09351676
Taylor, C. (1993). Modernity and the rise of the public sphere. In G. B.
Peterson (Ed.), The tanner lectures on human values (pp.
203–260). University of Utah Press. https://tannerlectures.utah.edu/_resources/documents/a-to-z/t/Taylor93.pdf
Taylor, C. (1995). Liberal politics and the public sphere. In
Philosophical arguments (pp. 257–288). Harvard University
Press.
Taylor, F. W. (1911). The principles of scientific management.
Harper & Brothers.
Teo, E., & Fu, K. (2021). A novel systematic approach of
constructing protests repertoires from social media: Comparing the roles
of organizational and non-organizational actors in social movement.
Journal of Computational Social Science Volume, 4(2),
787–812. https://doi.org/10.1007/s42001-021-00101-3
Tetlock, P. E. (2017). Expert political judgment: How good is it?
How can we know? (Revised). Princeton University Press. (Original
work published 2005)
Thelen, K. (2018). Regulating Uber: The politics of the
platform economy in Europe and the United
States. Perspectives on Politics, 16(4),
938–953. https://doi.org/10.1017/S1537592718001081
Theocharis, Y., & Jungherr, A. (2021). Computational social science
and the study of political communication. Political
Communication, 38(1–2), 1–22. https://doi.org/10.1080/10584609.2020.1833121
Theocharis, Y., Lowe, W., van Deth, J. W., & Garcı́a-Albacete, G.
(2015). Using twitter to mobilize protest action: Online mobilization
patterns and action repertoires in the Occupy Wall Street,
Indignados, and Aganaktismenoi movements.
Information, Communication & Society, 18(2),
202–220. https://doi.org/10.1080/1369118X.2014.948035
Theocharis, Y., Vitoratou, S., & Sajuria, J. (2017). Civil society
in times of crisis: Understanding collective action dynamics in
digitally-enabled volunteer networks. Journal of Computer-Mediated
Communication, 22(5), 248–265. https://doi.org/10.1111/jcc4.12194
Thompson, C. (2019). Coders: The making of a new tribe and the
remaking of the world. Penguin Press.
Tiffany, K. (2022). Everything i need i get from you: How fangirls
created the internet as we know it. Farrat, Straus; Giroux.
Tilly, C. (2007). Democracy. Cambridge University Press. https://doi.org/10.1017/CBO9780511804922
Timberg, C., & Gardner, A. (2012). Democrats push to redeploy Obama’s voter database. The Washington
Post. https://www.washingtonpost.com/business/economy/democrats-push-to-redeploy-obamas-voter-database/2012/11/20/d14793a4-2e83-11e2-89d4-040c9330702a_story.html
Toepfl, F., & Piwoni, E. (2015). Public spheres in interaction:
Comment sections of news websites as counterpublic spaces. Journal
of Communication, 65(3), 465–488. https://doi.org/10.1111/jcom.12156
Trask, A. W. (2019). Grokking deep learning. Manning
Publications Co.
Trippi, J. (2004). The revolution will not be televised: Democracy,
the internet, and the overthrow of everything. Regan Books.
Tse, E. (2015). China’s disruptors: How alibaba, xiaomi, tencent and
other companies are changing the rules of business.
Portfolio/Penguin.
Tucker, J. A., Theocharis, Y., Roberts, M. E., & Barberá, P. (2017).
From liberation to turmoil: Social media and democracy. Journal of
Democracy, 28(4), 46–59.
Tufekci, Z. (2017). Twitter and tear gas: The power and fragility of
networked protest. Yale University Press.
Turner, F. (2006). From counterculture to cyberculture: Stewart
brand, the whole earth network, and the rise of digital utopianism.
The University of Chicago Press.
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty:
Heuristics and biases. Science, 185(4157), 1124–1134.
https://doi.org/10.1126/science.185.4157.1124
Underwood, T. (2019). Distant horizons: Digital evidence and
literary change. The University of Chicago Press.
Usher, N. (2021). News for the rich, white, and blue: How place and
power distort American journalism. Columbia University
Press.
Van Bavel, J. J., Baicker, K., Boggio, P. S., Capraro, V., Cichocka, A.,
Cikara, M., Crockett, M. J., Crum, A. J., Douglas, K. M., Druckman, J.
N., Drury, J., Dube, O., Ellemers, N., Finkel, E. J., Fowler, J. H.,
Gelfand, M., Han, S., Haslam, S. A., Jetten, J., … Wille, R. (2020).
Using social and behavioural science to support COVID-19
pandemic response. Nature Human Behavior, 4, 460–471.
https://doi.org/10.1038/s41562-020-0884-z
van der Vlist, F., Helmond, A., Burkhardt, M., & Seitz, T. (2022).
API governance: The case of Facebook’s
evolution. Social Media + Society, 8(2), 1–24. https://doi.org/10.1177/20563051221086228
van Dijck, J., Poell, T., & Waal, M. de. (2018). The platform
society: Public values in a connective world. Oxford University
Press. https://doi.org/10.1093/oso/9780190889760.001.0001
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you
need. In I. Guyon, U. von Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
V. N. Vishwanathan, & R. Garnett (Eds.), NIPS 2017: 31st
conference on neural information processing systems (Vol. 30, pp.
1–11). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Vela, D., Sharp, A., Zhang, R., Nguyen, T., & Oleg S. Pianykh, A. H.
an. (2022). Temporal quality degradation in AI models.
Scientific Reports, 12(11654), 1–12. https://doi.org/10.1038/s41598-022-15245-z
Wallace, J. L. (2022). Seeking truth & hiding facts:
Information, ideology, & authoritarianism in china. Oxford
University Press. https://doi.org/10.1093/oso/9780197627655.001.0001
Wasserman, S., & Faust, K. (1994). Social network analysis:
Methods and applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511815478
Watts, D. J. (2011). Everything is obvious: How common sense fails
us. Random House.
Weber, V. (2019). Understanding the global ramifications of china’s
information-control model. In N. D. Wright (Ed.), Artificial
intelligence, china, russia, and the global order: Technological,
political, global, and creative perspectives (pp. 76–80). Air
University Press.
Weidmann, N. B. (2023). Data management for social scientists: From
files to datasets. Cambridge University Press. https://doi.org/10.1017/9781108990424
Wells, C., Pevehouse, D. V. S. J. C., Yang, J., Pelled, A., Boehm, F.,
Lukito, J., Ghosh, S., & Schmidt, J. L. (2016). How
Trump drove coverage to the nomination: Hybrid media
campaigning. Political Communication, 33(4), 669–676.
https://doi.org/10.1080/10584609.2016.1224416
Wessler, H. (2018). Habermas and the media. Polity Press.
Westin, A. F. (1967). Privacy and freedom. Atheneum.
Wiedeman, R. (2020). Times change. New York Magazine. https://nymag.com/intelligencer/2020/11/inside-the-new-york-times-heated-reckoning-with-itself.html
Wilkinson, A. (2023). The looming threat of AI to
Hollywood, and why it should matter to you. Vox.
https://www.vox.com/culture/23700519/writers-strike-ai-2023-wga
Williams, B. A., & Carpini, M. X. D. (2011). After broadcast
news: Media regimes, democracy, and the new information
environment. Cambridge University Press. https://doi.org/10.1017/CBO9780511846366
Williams, N. W., Casas, A., & Wilkerson, J. D. (2020). Images as
data for social science research. Cambridge University Press. https://doi.org/10.1017/9781108860741
Windsor, L. C. (2021). Advancing interdisciplinary work in computational
communication science. Political Communication,
38(1–2), 182–191. https://doi.org/10.1080/10584609.2020.1765915
Wintrobe, R. (1998). The political economy of dictatorship.
Cambridge University Press. https://doi.org/10.1017/CBO9781139174916
Wolfram, S. (2023). What is ChatGPT doing
… and why does it work? Wolfram Media, Inc.
Wooldridge, A. (2011). Masters of management: How the business gurus
and their ideas have changed the world—for better and for worse.
Harper Collins.
Woolridge, M. (2020). The road to conscious machines: The story of
AI. Pelican Books.
Wright, J., & Ma, Y. (2022). High-dimensional data analysis with
low-dimensional models: Principles, computation, and applications.
Cambridge University Press. https://doi.org/10.1017/9781108779302
Wright, K., Scott, M., & Bunce, M. (2019). Foundation-funded
journalism, philanthrocapitalism and tainted donors. Journalism
Studies, 20(5), 675–695. https://doi.org/10.1080/1461670X.2017.1417053
Wuttke, A. (2019). Why too many political science findings cannot be
trusted and what we can do about it: A review of meta-scientific
research and a call for academic reform. Politische
Vierteljahresschrift, 60(1), 1–19. https://doi.org/10.1007/s11615-018-0131-7
Yang, E., & Roberts, M. E. (2023). The authoritarian data problem.
Journal of Democracy, 34(4), 141–150. https://doi.org/10.1353/jod.2023.a907695
Yang, T., Majó-Vásquez, S., Nielsen, R. K., & González-Bailón, S.
(2020). Exposure to news grows less fragmented with an increase in
mobile access. PNAS: Proceedings of the National Academy of Sciences
of the United States of America, 117(46), 28678–28683. https://doi.org/10.1073/pnas.2006089117
Young, I. M. (2002). Inclusion and democracy. Oxford University
Press. https://doi.org/10.1093/0198297556.001.0001
Zaller, J. R. (1992). The nature and origins of mass opinion.
Cambridge University Press. https://doi.org/10.1017/CBO9780511818691
Zammito, J. H. (2012). The second life of the “public
sphere”: On charisma and routinization in the history of a
concept. In C. J. Emden & D. Midgley (Eds.), Changing
perceptions of the public sphere (pp. 90–119). Berghahn Books.
Zhang, Y., Shah, D., Foley, J., Abhishek, A., Lukito, J., Suk, J., Kim,
S. J., Sun, Z., Pevehouse, J., & Garlough, C. (2019). Whose lives
matter? Mass shootings and social media discourses of sympathy and
policy, 2012–2014. Journal of Computer-Mediated Communication,
24(4), 182–202. https://doi.org/10.1093/jcmc/zmz009
Zhu, Y. (2022). Hollywood in china: Behind the scenes of the world’s
largest movie market. The New Press.
Ziegele, M., Breiner, T., & Quiring, O. (2014). What creates
interactivity in online news discussions? An exploratory analysis of
discussion factors in user comments on news items. Journal of
Communication, 64(6), 1111–1138. https://doi.org/10.1111/jcom.12123
Zuckerberg, M. (2017). I believe the most important thing we can do is
work to bring people closer together. Facebook. https://www.facebook.com/notes/393134628500376/
Zwolinski, M., & Tomasi, J. (2023). The individualists:
Radicals, reactionaries, and the struggle for the soul of
libertarianism. Princeton University Press.